Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1529, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429267

RESUMO

Van der Waals layered transition-metal chalcogenides are drawing significant attention owing to their intriguing physical properties. This group of materials consists of abundant members with various elements, having a variety of different structures. However, they are all crystalline materials, and the physical properties of van der Waals layered quasicrystals have never been studied to date. Here, we report on the discovery of superconductivity in a van der Waals layered quasicrystal of Ta1.6Te. The electrical resistivity, magnetic susceptibility, and specific heat of the quasicrystal unambiguously validate the occurrence of bulk superconductivity at a transition temperature of ~1 K. This discovery can promote new research on assessing the physical properties of novel van der Waals layered quasicrystals as well as two-dimensional quasicrystals; moreover, it paves the way toward new frontiers of superconductivity in thermodynamically stable quasicrystals.

2.
Phys Rev Lett ; 126(15): 155501, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929229

RESUMO

It was established at the beginning of the 21st century that the critical resolved shear stress of small-sized (diameter from 50 nm to 10 µm) metallic crystals fabricated from bulk crystals increases drastically with decreasing specimen diameter. Dou and Derby [Scr. Mater. 61, 524 (2009)SCMAF71359-646210.1016/j.scriptamat.2009.05.012] showed that, the critical shear stresses of small-sized single crystals of various fcc metals obeyed a universal power law of specimen size with an exponent of -0.66. In this study, we succeeded in reproducing almost perfectly the above universal relation without any adjustable parameters, based on a deformation process controlled by the operation of single-ended dislocation sources.

3.
Sci Rep ; 10(1): 7957, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409637

RESUMO

In topological insulators (TIs), carriers originating from non-stoichiometric defects hamper bulk insulation. In (Bi,Sb)2(Te,Se)3 TIs (BSTS TIs), however, Se atoms strongly prefer specific atomic sites in the crystal structure (Se ordering), and this ordering structure suppresses the formation of point defects and contributes to bulk insulation. It has accelerated the understanding of TIs' surface electron properties and device application. In this study, we select Pb(Bi,Sb)2(Te,Se)4 (Pb-BSTS) TIs, which are reported to have larger bandgap compared to counterpart compound BSTS TIs. The Se ordering geometry was investigated by combining state-of-the-art scanning transmission electron microscopy and powder X-ray diffractometry. We demonstrated the existence of inner Se ordering in PbBi2(Te,Se)4 and also in Pb-BSTS TIs. Quantitative analysis of Se ordering and a qualitative view of atomic non-stoichiometry such as point defects are also presented. Pb-BSTS TIs' Se ordering structure and their large gap nature has the great potential to achieve more bulk insulation than conventional BSTS TIs.

4.
Phys Rev Lett ; 115(7): 075501, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317729

RESUMO

The growth of an Al-Ni-Co decagonal quasicrystal was observed by in situ, high-temperature, high-resolution transmission electron microscopy. The tiling patterns extracted from a series of high-resolution transmission electron microscopy images were analyzed on the basis of the high-dimensional description of quasicrystalline structures. The analyses indicated that the growth proceeded with frequent error-and-repair processes. The final, grown structure showed nearly perfect quasicrystalline order. Our observations suggest that the repair process by phason relaxation, rather than local growth rule, plays an essential role in the construction of ideal quasicrystalline order in real materials.

5.
Sci Technol Adv Mater ; 15(3): 034805, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877676

RESUMO

Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

6.
Phys Rev Lett ; 100(1): 013901, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18232763

RESUMO

We report that a full three-dimensional (3D) photonic band gap (PBG) is formed in a photonic amorphous structure in spite of complete lack of lattice periodicity. It is numerically shown that the structure "photonic amorphous diamond" possesses a sizable 3D PBG (18% of the center frequency for Si-air dielectric contrast) and that it can confine light at a defect as strongly as conventional photonic crystals can. These findings present important new insight into the origin of 3D PBG formation and open new possibilities in developing 3D PBG materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...