Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 348: 786-797, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718210

RESUMO

Despite recent advances in the field of mRNA therapy, the lack of safe and efficacious delivery vehicles with pharmaceutically developable properties remains a major limitation. Here, we describe the systematic optimisation of lipid-peptide nanocomplexes for the delivery of mRNA in two murine cancer cell types, B16-F10 melanoma and CT26 colon carcinoma as well as NCI-H358 human lung bronchoalveolar cells. Different combinations of lipids and peptides were screened from an original lipid-peptide nanocomplex formulation for improved luciferase mRNA transfection in vitro by a multi-factorial screening approach. This led to the identification of key structural elements within the nanocomplex associated with substantial improvements in mRNA transfection efficiency included alkyl tail length of the cationic lipid, the fusogenic phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol. The peptide component (K16GACYGLPHKFCG) was further improved by the inclusion of a linker, RVRR, that is cleavable by the endosomal enzymes cathepsin B and furin, and a hydrophobic motif (X-S-X) between the mRNA packaging (K16) and receptor targeting domains (CYGLPHKFCG). Nanocomplex transfections of a murine B16-F10 melanoma tumour supported the inclusion of cholesterol for optimal transfection in vivo as well as in vitro. In vitro transfections were also performed with mRNA encoding interleukin-15 as a potential immunotherapy agent and again, the optimised formulation with the key structural elements demonstrated significantly higher expression than the original formulation. Physicochemical characterisation of the nanocomplexes over time indicated that the optimal formulation retained biophysical properties such as size, charge and mRNA complexation efficiency for 14 days upon storage at 4 °C without the need for additional stabilising agents. In summary, we have developed an efficacious lipid-peptide nanocomplex with promising pharmaceutical development properties for the delivery of therapeutic mRNA.


Assuntos
Lipossomos , Melanoma , Animais , Humanos , Lipídeos/química , Lipossomos/química , Camundongos , Peptídeos/química , RNA Mensageiro/genética , Transfecção
2.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35387780

RESUMO

BACKGROUND: The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS: We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS: AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS: Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).


Assuntos
Neoplasias , Oligonucleotídeos Antissenso , Animais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Terapia de Imunossupressão , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T Reguladores , Microambiente Tumoral
3.
Nucleic Acids Res ; 47(9): 4375-4392, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30927008

RESUMO

Antisense oligonucleotides (ASOs) modulate cellular target gene expression through direct binding to complementary RNA. Advances in ASO chemistry have led to the development of phosphorothioate (PS) ASOs with constrained-ethyl modifications (cEt). These next-generation cEt-ASOs can enter cells without transfection reagents. Factors involved in intracellular uptake and trafficking of cEt-ASOs leading to successful target knockdown are highly complex and not yet fully understood. AZD4785 is a potent and selective therapeutic KRAS cEt-ASO currently under clinical development for the treatment of cancer. Therefore, we used this to investigate mechanisms of cEt-ASO trafficking across a panel of cancer cells. We found that the extent of ASO-mediated KRAS mRNA knockdown varied significantly between cells and that this did not correlate with bulk levels of intracellular accumulation. We showed that in cells with good productive uptake, distribution of ASO was perinuclear and in those with poor productive uptake distribution was peripheral. Furthermore, ASO rapidly trafficked to the late endosome/lysosome in poor productive uptake cells compared to those with more robust knockdown. An siRNA screen identified several factors mechanistically involved in productive ASO uptake, including the endosomal GTPase Rab5C. This work provides novel insights into the trafficking of cEt-ASOs and mechanisms that may determine their cellular fate.


Assuntos
Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas rab5 de Ligação ao GTP/genética , Endossomos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Neoplasias/patologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
4.
Mol Ther Nucleic Acids ; 8: 383-394, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918038

RESUMO

Antisense oligonucleotide (ASO) gapmers downregulate gene expression by inducing enzyme-dependent degradation of targeted RNA and represent a promising therapeutic platform for addressing previously undruggable genes. Unfortunately, their therapeutic application, particularly that of the more potent chemistries (e.g., locked-nucleic-acid-containing gapmers), has been hampered by their frequent hepatoxicity, which could be driven by hybridization-mediated interactions. An early de-risking of this liability is a crucial component of developing safe, ASO-based drugs. To rank ASOs based on their effect on the liver, we have developed an acute screen in the mouse that can be applied early in the drug development cycle. A single-dose (3-day) screen with streamlined endpoints (i.e., plasma transaminase levels and liver weights) was observed to be predictive of ASO hepatotoxicity ranking established based on a repeat-dose (15 day) study. Furthermore, to study the underlying mechanisms of liver toxicity, we applied transcriptome profiling and pathway analyses and show that adverse in vivo liver phenotypes correlate with the number of potent, hybridization-mediated off-target effects (OTEs). We propose that a combination of in silico OTE predictions, streamlined in vivo hepatotoxicity screening, and a transcriptome-wide selectivity screen is a valid approach to identifying and progressing safer compounds.

5.
Nucleic Acids Res ; 43(18): 8638-50, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26338776

RESUMO

With many safety and technical limitations partly mitigated through chemical modifications, antisense oligonucleotides (ASOs) are gaining recognition as therapeutic entities. The increase in potency realized by 'third generation chemistries' may, however, simultaneously increase affinity to unintended targets with partial sequence complementarity. However, putative hybridization-dependent off-target effects (OTEs), a risk historically regarded as low, are not being adequately investigated. Here we show an unexpectedly high OTEs confirmation rate during screening of fully phosphorothioated (PS)-LNA gapmer ASOs designed against the BACH1 transcript. We demonstrate in vitro mRNA and protein knockdown of off-targets with a wide range of mismatch (MM) and gap patterns. Furthermore, with RNase H1 activity residing within the nucleus, hybridization predicted against intronic regions of pre-mRNAs was tested and confirmed. This dramatically increased ASO-binding landscape together with relatively high potency of such interactions translates into a considerable safety concern. We show here that with base pairing-driven target recognition it is possible to predict the putative off-targets and address the liability during lead design and optimization phases. Moreover, in silico analysis performed against both primary as well as spliced transcripts will be invaluable in elucidating the mechanism behind the hepatoxicity observed with some LNA-modified gapmers.


Assuntos
Éxons , Técnicas de Silenciamento de Genes , Íntrons , Oligonucleotídeos Antissenso , Pareamento Incorreto de Bases , Células Cultivadas , Simulação por Computador , Inativação Gênica , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Ribonuclease H/metabolismo
6.
Mol Ther Nucleic Acids ; 2: e65, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322014

RESUMO

Lung pathology in cystic fibrosis is linked to dehydration of the airways epithelial surface which in part results from inappropriately raised sodium reabsorption through the epithelial sodium channel (ENaC). To identify a small-interfering RNA (siRNA) which selectively inhibits ENaC expression, chemically modified 21-mer siRNAs targeting human ENaCα were designed and screened. GSK2225745, was identified as a potent inhibitor of ENaCα mRNA (EC(50) (half maximal effective concentration) = 0.4 nmol/l, maximum knockdown = 85%) and protein levels in A549 cells. Engagement of the RNA interference (RNAi) pathway was confirmed using 5' RACE. Further profiling was carried out in therapeutically relevant human primary cells. In bronchial epithelial cells, GSK2225745 elicited potent suppression of ENaCα mRNA (EC(50) = 1.6 nmol/l, maximum knockdown = 82%). In human nasal epithelial cells, GSK2225745 also produced potent and long-lasting (≥72 hours) suppression of ENaCα mRNA levels which was associated with significant inhibition of ENaC function (69% inhibition of amiloride-sensitive current in cells treated with GSK2225745 at 10 nmol/l). GSK2225745 showed no evidence for potential to stimulate toll-like receptor (TLR)3, 7 or 8. In vivo, topical delivery of GSK2225745 in a lipid nanoparticle formulation to the airways of mice resulted in significant inhibition of the expression of ENaCα in the lungs. In conclusion, GSK2225745 is a potent inhibitor of ENaCα expression and warrants further evaluation as a potential novel inhaled therapeutic for cystic fibrosis.Molecular Therapy - Nucleic Acids (2013) 2, e65; doi:10.1038/mtna.2012.57; published online 15 January 2013.

7.
Respir Res ; 7: 26, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16480492

RESUMO

BACKGROUND: The cationic lipid Genzyme lipid (GL) 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. METHODS: Anti-lacZ and ENaC (epithelial sodium channel) siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. RESULTS: In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to beta-galactosidase reduced betagal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. CONCLUSION: This study suggests that although siRNAs and asODNs can be developed to inhibit gene expression in culture systems and certain organs in vivo, barriers to nucleic acid transfer in airway epithelial cells seen with large DNA molecules may also affect the efficiency of in vivo uptake of small nucleic acid molecules.


Assuntos
Fibrose Cística/genética , Fibrose Cística/metabolismo , Marcação de Genes/métodos , Lipídeos/química , Oligonucleotídeos Antissenso/genética , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Células Cultivadas , Células Epiteliais , Inativação Gênica , Humanos , Camundongos , Células NIH 3T3 , Oligonucleotídeos Antissenso/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Mucosa Respiratória
8.
J Mol Biol ; 344(3): 683-95, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15533438

RESUMO

Asthma and chronic obstructive pulmonary disease are highly prevalent and economically important inflammatory airway diseases associated with mucus hypersecretion. Considerable additional morbidity and mortality are related to acute exacerbations, which are associated with further mucus hypersecretion. MUC5AC is a prominent airway mucin; however, the signalling pathways regulating MUC5AC hypersecretion are not fully characterised. We investigated the signalling pathway regulating phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC gene and protein expression in human respiratory epithelial cells. Using NCI-H292 cells, we demonstrated that treatment with PMA increased production of total and MUC5AC-specific mucin proteins. This increase was dependent on de novo MUC5AC gene transcription. We identified a short, proximal region of the MUC5AC promoter essential for this activity containing three specificity protein (Sp) 1 transcription factor-binding sites and a single CACCC site. By chemical inhibition, site-directed promoter mutagenesis and electrophoretic mobility-shift assay (EMSA), we demonstrated that PMA induced proteins binding to all three Sp1 sites and that they were all required for full induction of MUC5AC promoter activity. We then demonstrated a Ras-Raf-MEK/ERK signalling pathway was exclusively activated upstream of Sp1 activating the promoter and confirmed the requirement for matrix metalloproteinase activation leading to a ligand-dependent activation of the epidermal growth factor receptor. Finally, we demonstrated that activation of the novel protein kinase C isoforms delta and theta; was required upstream of the metalloproteinase activation. We have characterised a signalling pathway regulating PMA induction of MUC5AC. Studies such as this identify key signalling intermediates as targets for pharmacological intervention to treat mucus hypersecretion.


Assuntos
Brônquios/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Sistema de Sinalização das MAP Quinases , Mucinas/biossíntese , Fator de Transcrição Sp1/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Sequência de Bases , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Primers do DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Humanos , Mucina-5AC , Mucinas/genética , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...