Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(22): 9610-9617, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613436

RESUMO

Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/ß-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/ß-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.


Assuntos
Inibidores de Proteases , Fator de Necrose Tumoral alfa , Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Transdução de Sinais , Tensoativos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
ACS Chem Biol ; 15(8): 2116-2124, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32662976

RESUMO

Aberrant signaling by tumor necrosis factor-α (TNFα) is associated with inflammatory diseases that can be treated with engineered proteins that inhibit binding of this cytokine to cell-surface receptors. Despite these clinical successes, there is considerable interest in the development of smaller antagonists of TNFα-receptor interactions. We describe a new 29-residue α/ß-peptide, a molecule that contains three ß-amino acid residues and three α-aminoisobutryic acid (Aib) residues, that displays potent inhibition of TNFα binding to TNFα receptor 1 (TNFR1) and rescues cells from TNFα-induced death. The complement of nonproteinogenic residues renders this α/ß-peptide highly resistant to proteolysis, relative to all-α analogues. The mechanism of inhibitory action of the new 29-mer involves disruption of the trimeric TNFα quaternary structure, which prevents productive binding to TNFα receptors. Unexpectedly, we discovered that peptide-induced trimer disruption can be promoted by structurally diverse small molecules, including a detergent commonly used during selection procedures. The discovery of this synergistic effect provides a new context for understanding previous reports on peptidic antagonists of TNFα-receptor interactions and suggests new avenues for future efforts to block signaling via proteins with an active form that is oligomeric, including other members of the TNFα family.


Assuntos
Biopolímeros/química , Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Fator de Necrose Tumoral alfa/química , Sequência de Aminoácidos , Aminoácidos/química , Peptídeos/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Fator de Necrose Tumoral alfa/metabolismo
3.
Angew Chem Int Ed Engl ; 57(42): 13829-13832, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30161284

RESUMO

Oligomers containing α- and ß-amino acid residues (α/ß-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from ß3 -amino acids or cyclic ß-amino acids, but the impact of incorporating ß2 residues has received little attention. The effects of ß2 residues on the conformation and recognition behavior of α/ß-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/ß backbones that differ only in the placement of certain side chains along the backbone (ß3 vs. ß2 substitution) was compared. Circular dichroism data suggest that ß2 residues can be helix-destabilizing relative to ß3 residues, although the size of this effect seems to depend on side chain identity. Binding data show that ß3 →ß2 substitution at sites that contact a partner protein, Bcl-xL , can influence affinity in a way that transcends effects on helicity.


Assuntos
Aminoácidos/química , Proteínas Reguladoras de Apoptose/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta
4.
J Am Chem Soc ; 137(35): 11365-75, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26317395

RESUMO

Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and ß-amino acid residues ("α/ß-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/ß-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/ß-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/ß-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/ß-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteína 11 Semelhante a Bcl-2 , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/metabolismo , Citocromos c/metabolismo , Células HCT116 , Humanos , Proteínas de Membrana/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Proto-Oncogênicas/química
5.
Org Lett ; 15(4): 944-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390979

RESUMO

The synthesis and structural characterization of hybrid α/γ-peptides resulting from a 1:1 α→γ residue substitution at cross-strand positions in a hairpin-forming α-peptide sequence are described. Cyclically constrained γ-residues based on 1,3-substituted cyclohexane or benzene scaffolds support a native-like hairpin fold in aqueous solution, and the unnatural residues stabilize the folded state by ∼0.2 kcal/mol per α→γ substitution.


Assuntos
Cicloexanos/química , Peptídeos/química , Aminoácidos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Secundária de Proteína , Soluções , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...