Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 906381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712256

RESUMO

Anti-Müllerian hormone (AMH) is a distinctive biomarker of the immature Sertoli cell. AMH expression, triggered by specific transcription factors upon fetal Sertoli cells differentiation independently of gonadotropins or sex steroids, drives Müllerian duct regression in the male, preventing the development of the uterus and Fallopian tubes. AMH continues to be highly expressed by Sertoli until the onset of puberty, when it is downregulated to low adult levels. FSH increases testicular AMH output by promoting immature Sertoli cell proliferation and individual cell expression. AMH secretion also showcases a differential regulation exerted by intratesticular levels of androgens and estrogens. In the fetus and the newborn, Sertoli cells do not express the androgen receptor, and the high androgen concentrations do not affect AMH expression. Conversely, estrogens can stimulate AMH production because estrogen receptors are present in Sertoli cells and aromatase is stimulated by FSH. During childhood, sex steroids levels are very low and do not play a physiological role on AMH production. However, hyperestrogenic states upregulate AMH expression. During puberty, testosterone inhibition of AMH expression overrides stimulation by estrogens and FSH. The direct effects of sex steroids on AMH transcription are mediated by androgen receptor and estrogen receptor α action on AMH promoter sequences. A modest estrogen action is also mediated by the membrane G-coupled estrogen receptor GPER. The understanding of these complex regulatory mechanisms helps in the interpretation of serum AMH levels found in physiological or pathological conditions, which underscores the importance of serum AMH as a biomarker of intratesticular steroid concentrations.


Assuntos
Hormônio Antimülleriano , Testículo , Androgênios/fisiologia , Hormônio Antimülleriano/fisiologia , Biomarcadores , Estrogênios/fisiologia , Hormônio Foliculoestimulante/fisiologia , Humanos , Masculino , Receptores Androgênicos/fisiologia , Testículo/crescimento & desenvolvimento , Testosterona/fisiologia
2.
Sci Rep ; 10(1): 15062, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934281

RESUMO

Anti-Müllerian hormone (AMH) is secreted by Sertoli cells of the testes from early fetal life until puberty, when it is downregulated by androgens. In conditions like complete androgen insensitivity syndrome (CAIS), AMH downregulation does not occur and AMH increases at puberty, due in part to follicle-stimulating hormone (FSH) effect. However, other conditions like Peutz-Jeghers syndrome (PJS), characterised by low FSH, also have increased AMH. Because both CAIS and PJS may present as hyperoestrogenic states, we tested the hypothesis that oestradiol (E2) upregulates AMH expression in peripubertal Sertoli cells and explored the molecular mechanisms potentially involved. The results showed that E2 is capable of inducing an upregulation of endogenous AMH and of the AMH promoter activity in the prepubertal Sertoli cell line SMAT1, signalling through ERα binding to a specific ERE sequence present on the hAMH promoter. A modest action was also mediated through the membrane oestrogen receptor GPER. Additionally, the existence of ERα expression in Sertoli cells in patients with CAIS was confirmed by immunohistochemistry. The evidence presented here provides biological plausibility to the hypothesis that testicular AMH production increases in clinical conditions in response to elevated oestrogen levels.


Assuntos
Síndrome de Resistência a Andrógenos/metabolismo , Hormônio Antimülleriano/metabolismo , Receptor alfa de Estrogênio/biossíntese , Proteínas de Neoplasias/biossíntese , Síndrome de Peutz-Jeghers/metabolismo , Elementos de Resposta , Células de Sertoli/metabolismo , Síndrome de Resistência a Andrógenos/patologia , Animais , Linhagem Celular , Criança , Pré-Escolar , Estradiol/metabolismo , Feminino , Humanos , Masculino , Camundongos , Síndrome de Peutz-Jeghers/patologia , Células de Sertoli/patologia
3.
Mol Reprod Dev ; 87(1): 66-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755607

RESUMO

Meiosis begins at puberty and relies on several factors, including androgens and retinoic acid in the mouse testis. CYP26B1 degrades retinoic acid in the testis during prenatal development preventing meiosis initiation. Given the concurrence of meiotic entry and completion of Sertoli cell maturation in response to androgens at puberty in the mouse, we proposed that CYP26B1 is downregulated by androgens in the Sertoli cell during this period. By immunohistochemistry, we showed that CYP26B1 declines in Sertoli cells after birth. However, luciferase reporter assays and quantitative reverse transcription-polymerase chain reaction performed in the prepubertal mouse Sertoli cell line SMAT1 revealed no changes in Cyp26b1 expression in response to androgen treatment. Furthermore, studies carried out using primary Sertoli cells of 10-day-old mice showed no changes in either Cyp26b1 or CYP26B1 expression in response to androgen treatment. In summary, the hereby reported decline in CYP26B1 expression in Sertoli cells towards pubertal onset does not appear to be caused by a direct inhibitory effect of androgens on Sertoli cells in the mouse.


Assuntos
Androgênios/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Células de Sertoli/metabolismo , Androgênios/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Linhagem Celular , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gônadas/embriologia , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Camundongos , Gravidez , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Tretinoína/metabolismo
4.
Cells ; 8(8)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404977

RESUMO

Androgens are key for pubertal development of the mammalian testis, a phenomenon that is tightly linked to Sertoli cell maturation. In this review, we discuss how androgen signaling affects Sertoli cell function and morphology by concomitantly inhibiting some processes and promoting others that contribute jointly to the completion of spermatogenesis. We focus on the molecular mechanisms that underlie anti-Müllerian hormone (AMH) inhibition by androgens at puberty, as well as on the role androgens have on Sertoli cell tight junction formation and maintenance and, consequently, on its effect on proper germ cell differentiation and meiotic onset during spermatogenesis.


Assuntos
Receptores Androgênicos/genética , Células de Sertoli/metabolismo , Transdução de Sinais/genética , Testículo/metabolismo , Ativação Transcricional/genética , Animais , Humanos , Masculino , Receptores Androgênicos/metabolismo , Células de Sertoli/patologia , Testículo/patologia
5.
Biol Reprod ; 99(6): 1303-1312, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985989

RESUMO

Testicular anti-Müllerian hormone (AMH) production is inhibited by androgens around pubertal onset, as observed under normal physiological conditions and in patients with precocious puberty. In agreement, AMH downregulation is absent in patients with androgen insensitivity. The molecular mechanisms underlying the negative regulation of AMH by androgens remain unknown. Our aim was to elucidate the mechanisms through which androgens downregulate AMH expression in the testis. A direct negative effect of androgens on the transcriptional activity of the AMH promoter was found using luciferase reporter assays in the mouse prepubertal Sertoli cell line SMAT1. A strong inhibition of AMH promoter activity was seen in the presence of both testosterone and DHT and of the androgen receptor. By site-directed mutagenesis and chromatin immunoprecipitation assays, we showed that androgen-mediated inhibition involved the binding sites for steroidogenic factor 1 (SF1) present in the proximal promoter of the AMH gene. In this study, we describe for the first time the mechanism behind AMH inhibition by androgens, as seen in physiological and pathological conditions in males. Inhibition of AMH promoter activity by androgens could be due to protein-protein interactions between the ligand-bound androgen receptor and SF1 or by blockage of SF1 binding to its sites on the AMH promoter.


Assuntos
Androgênios/farmacologia , Hormônio Antimülleriano/metabolismo , Células de Sertoli/fisiologia , Fator Esteroidogênico 1/metabolismo , Animais , Hormônio Antimülleriano/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação para Baixo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Regiões Promotoras Genéticas , Receptores Androgênicos/metabolismo , Fator Esteroidogênico 1/genética , Transcriptoma
6.
Int J Pediatr Endocrinol ; 2016: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799946

RESUMO

In pediatric patients, basal testosterone and gonadotropin levels may be uninformative in the assessment of testicular function. Measurement of serum anti-Müllerian hormone (AMH) has become increasingly widespread since it provides information about the activity of the male gonad without the need for dynamic tests, and also reflects the action of FSH and androgens within the testis. AMH is secreted in high amounts by Sertoli cells from fetal life until the onset of puberty. Basal AMH expression is not dependent on gonadotropins or sex steroids; however, FSH further increases and testosterone inhibits AMH production. During puberty, testosterone induces Sertoli cell maturation, and prevails over FSH on AMH regulation. Therefore, AMH production decreases. Serum AMH is undetectable in patients with congenital or acquired anorchidism, or with complete gonadal dysgenesis. Low circulating levels of AMH may reflect primary testicular dysfunction, e.g. in certain patients with cryptorchidism, monorchidism, partial gonadal dysgenesis, or central hypogonadism. AMH is low in boys with precocious puberty, but it increases to prepubertal levels after successful treatment. Conversely, serum AMH remains at high, prepubertal levels in boys with constitutional delay of puberty. Serum AMH measurements are useful, together with testosterone determination, in the diagnosis of patients with ambiguous genitalia: both are low in patients with gonadal dysgenesis, including ovotesticular disorders of sex development, testosterone is low but AMH is in the normal male range or higher in patients with disorders of androgen synthesis, and both hormones are normal or high in patients with androgen insensitivity. Finally, elevation of serum AMH above normal male prepubertal levels may be indicative of rare cases of sex-cord stromal tumors or Sertoli cell-limited disturbance in the McCune Albright syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...