Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 59(9): 1264-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21213301

RESUMO

The Drosophila nervous system is ideally suited to study glial cell development and function, because it harbors only relatively few glial cells, and nervous system development is very well conserved during evolution. In the past, enhancer trap studies provided tools allowing to study glial cells with a single-cell resolution and, moreover, disclosed a surprising molecular heterogeneity among the different glial cells. The peripheral nervous system in the embryo comprises only 12 glial cells in one hemisegment and thus offers a unique opportunity to decipher the mechanisms directing glial development. Here, we focus on transcriptional regulators that have been reported to function during gliogenesis. To uncover additional regulators, we have conducted a genetic screen and report the identification of two additional transcriptional regulators involved in the control of peripheral glial migration: nejire and tango.


Assuntos
Drosophila/fisiologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuroglia/fisiologia , Sistema Nervoso Periférico/embriologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Masculino , Neurogênese/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/fisiologia
2.
Dev Biol ; 301(1): 27-37, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17157832

RESUMO

A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Hormônios Juvenis/fisiologia , Neuroglia/citologia , Receptores Notch/fisiologia , Animais , Drosophila/embriologia , Proteínas de Drosophila/genética , Imuno-Histoquímica , Hormônios Juvenis/genética , Mutagênese , Receptores Notch/genética , Transdução de Sinais
3.
Development ; 134(2): 347-56, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17166919

RESUMO

Terminal differentiation of single cells selected from a group of equivalent precursors may be random, or may be regulated by external signals. In the Drosophila embryo, maturation of a single tendon cell from a field of competent precursors is triggered by muscle-dependent signaling. The transcription factor Stripe was reported to induce both the precursor cell phenotype, as well as the terminal differentiation of muscle-bound tendons. The mechanism by which Stripe activates these distinct differentiation programs remained unclear. Here, we demonstrate that each differentiation state is associated with a distinct Stripe isoform and that the Stripe isoforms direct different transcriptional outputs. Importantly, the transition to the mature differentiation state is triggered post-transcriptionally by enhanced production of the stripeA splice variant, which is typical of the tendon mature state. This elevation is mediated by the RNA-binding protein How(S), with levels sensitive to muscle-dependent signals. In how mutant embryos the expression of StripeA is significantly reduced, while overexpression of How(S) enhances StripeA protein as well as mRNA levels in embryos. Analysis of the expression of a stripeA minigene in S-2 cells suggests that this elevation may be due to enhanced splicing of stripeA. Consistently, stripeA mRNA is specifically reduced in embryos mutant for the splicing factor Crn, which physically interacts with How(S). Thus, we demonstrate a mechanism by which tendon cell terminal differentiation is maintained and reinforced by the approaching muscle.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Drosophila/genética , Fatores de Transcrição/genética , Processamento Alternativo , Animais , Sequência de Bases , Padronização Corporal , DNA Complementar/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Genes de Insetos , Músculos/embriologia , Músculos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Tendões/embriologia , Tendões/metabolismo , Fatores de Transcrição/metabolismo
4.
Neuron Glia Biol ; 3(1): 35-43, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18634576

RESUMO

In complex organisms the nervous system comprises two cell types: neurons and glial cells. Their correct interplay is of crucial importance during both the development of the nervous system and for later function of the nervous system. In recent years tools have been developed for Drosophila that enable genetic approaches to understanding glial development and differentiation. Focusing on peripheral glial cells we first summarize wild-type development, then introduce some of the relevant genes that have been identified. Despite obvious differences between Drosophila and mammalian glial cells, the molecular machinery that controls terminal differentiation appears well conserved.

5.
Neuron ; 52(6): 969-80, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178401

RESUMO

In both vertebrates and invertebrates, glial cells wrap axonal processes to ensure electrical conductance. Here we report that Crooked neck (Crn), the Drosophila homolog of the yeast Clf1p splicing factor, is directing peripheral glial cell maturation. We show that crooked neck is expressed and required in glial cells to control migration and axonal wrapping. Within the cytoplasm, Crn interacts with the RNA-binding protein HOW and then translocates to the nucleus where the Crn/HOW complex controls glial differentiation by facilitating splicing of specific target genes. By using a GFP-exon trap approach, we identified some of the in vivo target genes that encode proteins localized in autocellular septate junctions. In conclusion, here we show that glial cell differentiation is controlled by a cytoplasmic assembly of splicing components, which upon translocation to the nucleus promote the splicing of genes involved in the assembly of cellular junctions.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Neuroglia/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Processos de Crescimento Celular , Linhagem Celular , Núcleo Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Genes de Insetos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia Eletrônica de Transmissão/métodos , Mutação/fisiologia , Neuroglia/ultraestrutura , Proteínas Nucleares/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Transfecção/métodos , Asas de Animais/crescimento & desenvolvimento
6.
Curr Opin Neurobiol ; 15(1): 34-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15721742

RESUMO

In all complex organisms, glial cells are pivotal for neuronal development and function. Insects are characterized by having only a small number of these cells, which nevertheless display a remarkable molecular diversity. An intricate relationship between neurons and glia is initially required for glial migration and during axonal patterning. Recent data suggest that in organisms such as Drosophila, a prime role of glial cells lies in setting boundaries to guide and constrain axonal growth.


Assuntos
Moléculas de Adesão Celular Neurônio-Glia/fisiologia , Comunicação Celular/fisiologia , Insetos/citologia , Neuroglia/citologia , Neurônios/citologia , Animais , Insetos/fisiologia , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Neuroglia/fisiologia , Neurônios/fisiologia
7.
Curr Opin Genet Dev ; 12(4): 473-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12100895

RESUMO

Nervous system development requires the specification of numerous neural stem cells. Subsequently these stem cells divide in a spatially and temporally controlled manner to generate the diverse cell types found in the different layers of the nervous system. Lineage specification is brought about by transcriptional regulators, which often act as transcriptional repressors.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso/embriologia , Células-Tronco/fisiologia , Animais , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...