Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400348, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564790

RESUMO

Production of green hydrogen (H2) is a sustainable process able to address the current energy crisis without contributing to long-term greenhouse gas emissions. Many Ag-based catalysts have shown promise for light-driven H2 generation, however, pure Ag-in its bulk or nanostructured forms-suffers from slow electron transfer kinetics and unfavorable Ag─H bond strength. It is demonstrated that the complexation of Ag with various chalcogenides can be used as a tool to optimize these parameters and reach improved photocatalytic performance. In this work, metal-organic-chalcogenolate assemblies (MOCHAs) are introduced as effective catalysts for light-driven hydrogen evolution reaction (HER) and investigate their performance and structural stability by examining a series of AgXPh (X = S, Se, and Te) compounds. Two catalyst-support sensitization strategies are explored: by designing MOCHA/TiO2 composites and by employing a common Ru-based photosensitizer. It is demonstrated that the heterogeneous approach yields stable HER performance but involves a catalyst transformation at the initial stage of the photocatalytic process. In contrast to this, the visible-light-driven MOCHA-dye dyad shows similar HER activity while also ensuring the structural integrity of the MOCHAs. The work shows the potential of MOCHAs in constructing photosystems for catalytic H2 production and provides a direct comparison between known AgXPh compounds.

2.
Sustain Energy Fuels ; 8(6): 1225-1235, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38481764

RESUMO

This study investigates the hydrogen evolution reaction (HER) efficiency of two photosystems incorporating an all-inorganic molecular thiomolybdate [Mo3S13]2- cluster as a HER catalyst. First, we delve into the performance of a homogeneous [Mo3S13]2-/[Ru(bpy)3]2+ (Mo3/Ru) dyad which demonstrates high turnover frequencies (TOFs) and apparent quantum yields (AQYs) at 445 nm approaching the level of 0.5%, yet its performance is marked by pronounced deactivation. In contrast, a heterogeneous approach involves anchoring [Mo3S13]2- onto graphitic carbon nitride (GCN) nanosheets through weak electrostatic association with its triazine/heptazine scaffold. [Mo3S13]2-/GCN (Mo3/GCN) displays effective H2 generation under visible light, with TOF metrics on par with those of its homogeneous analog. Although substantial leaching of [Mo3S13]2- species from the Mo3/GCN surface occurs, the remaining {Mo3}-based centers demonstrate impressive stability, leading to enduring HER performance, starkly distinguishing it from the homogeneous Mo3/Ru photosystem. Photoluminescence (PL) quenching experiments confirm that the performance of Mo3/GCN is not limited by the quality of the inorganic interface, but could be optimized by using higher surface area supports or a higher concentration of [Mo3S13]2- sites. Our findings showcase complexities underlying the evaluation and comparison of photosystems comprising well-defined catalytic centers and pave the way for developing analogous surface-supported (photo)catalysts with broad use in energy applications.

3.
ACS Sustain Chem Eng ; 12(4): 1455-1467, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38303909

RESUMO

Silicon oxycarbides (SiOCs) impregnated with tetrabutylammonium halides (TBAX) were investigated as an alternative to silica-based supported ionic liquid phases for the production of bio-based cyclic carbonates derived from limonene and linseed oil. The support materials and the supported ionic liquid phases (SILPs) were characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray photoelectron spectroscopy, microscopy, and solvent adsorption. The silicon oxycarbide supports were pyrolyzed at 300-900 °C prior to being coated with different tetrabutylammonium halides and further used as heterogeneous catalysts for the formation of cyclic carbonates in batch mode. Excellent selectivities of 97-100% and yields of 53-62% were obtained with tetrabutylammonium chloride supported on the silicon oxycarbides. For comparison, the catalytic performance of commonly employed silica-supported ionic liquids was investigated under the same conditions. The silica-supported species triggered the formation of a diol as a byproduct, leading to a lower selectivity of 87% and a lower yield of 48%. Ultimately, macroporous monolithic SiOC-SILPs with suitable permeability characteristics (k1 = 10-11 m2) were produced via photopolymerization-assisted solidification templating and applied for the selective and continuous production of limonene carbonate with supercritical carbon dioxide as the reagent and sole solvent. Constant product output over 48 h without concurrent catalyst leaching was achieved.

4.
ACS Appl Mater Interfaces ; 16(7): 8763-8771, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38327063

RESUMO

Despite having favorable energetics and tunable optoelectronic properties, utilization of BaTiO3 (BTO) for photocatalytic reactions is limited by its absorption only in the ultraviolet region. To address this challenge, BTO is doped with iridium (Ir) to induce visible light absorption. The visible light-induced photocatalytic H2 generation efficiency is enhanced by 2 orders of magnitude on selective conversion of the Ir valence state from Ir4+ to Ir3+. To understand such intriguing behavior, valence state-dependent changes in the optoelectronic, structural, and surface properties and electronic band structure are comprehensively investigated. The effect of electron occupancy change between Ir4+ (t2g5 eg0) and Ir3+ (t2g6 eg0) and their energetic positions within the band gap is found to significantly influence H2 generation. Besides this, converting Ir4+ to Ir3+ enhanced the photocathodic current and lowered the onset potential. Results aid in designing photocatalysts to efficiently use low-energy photons for enhancing solar H2 production in these emerging BTO-based photocatalysts. Collectively, the observations made in this work highlight the promising application of Ir3+:BTO in z-scheme photocatalysis.

5.
Adv Mater ; 36(7): e2305730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899494

RESUMO

Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.

6.
Small ; 20(21): e2307981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126913

RESUMO

A new method to engineer hierarchically porous zeolitic imidazolate frameworks (ZIFs) through selective ligand removal (SeLiRe) is presented. This innovative approach involves crafting mixed-ligand ZIFs (ML-ZIFs) with varying proportions of 2-aminobenzimidazole (NH2-bIm) and 2-methylimidazole (2-mIm), followed by controlled thermal treatments. This process creates a dual-pore system, incorporating both micropores and additional mesopores, suggesting selective cleavage of metal-ligand coordination bonds. Achieving this delicate balance requires adjustment of heating conditions for each mixed-ligand ratio, enabling the targeted removal of NH2-bIm from a variety of ML-ZIFs while preserving their inherent microporous framework. Furthermore, the distribution of the initial thermolabile ligand plays a pivotal role in determining the resulting mesopore architecture. The efficacy of this methodology is aptly demonstrated through the assessment of hierarchically porous ZIFs for their potential in adsorbing diverse organic dyes in aqueous environments. Particularly striking is the performance of the 10%NH2-ZIF-2 h, which showcases an astonishing 40-fold increase in methylene blue adsorption capacity compared to ZIF-8, attributed to larger pore volumes that accelerate the diffusion of dye molecules to adsorption sites. This versatile technique opens new avenues for designing micro/mesoporous ZIFs, particularly suited for liquid media scenarios necessitating efficient active site access and optimal diffusion kinetics, such as purification, catalysis, and sensing.

7.
J Colloid Interface Sci ; 652(Pt B): 2147-2158, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703684

RESUMO

CuAl layered double hydroxide (LDH) and polymeric carbon nitride (g-C3N4, GCNN) were assembled to construct a set of novel 2D/2D CuAl-LDH/GCNN heterostructures. These materials were tested towards H2 and O2 generation from water splitting using visible-light irradiation. Compared to pristine materials, the heterostructures displayed strongly enhanced visible-light H2 evolution, dependent on the LDH content, which acts as a cocatalyst, replacing the benchmark Pt. The optimal LDH loading was achieved for 0.2CuAl-LDH/GCNN that exhibited an increased number of active sites and showed a trade-off between charge separation efficiency and light shading, resulting in a 32-fold increase in the amount of evolved H2 compared with GCNN. In addition, the 0.2CuAl-LDH/GCNN heterostructure generated 1.5 times more O2 than GCNN. The higher photocatalytic performance was due to efficient charge carriers' separation at the heterojunction interface via an S-scheme (corroborated by work function, steady-state and time-resolved photoluminescence studies), enhanced utilisation of longer-wavelength photons (>460 nm) and higher surface area available for the catalytic reactions.

8.
Commun Chem ; 6(1): 43, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859623

RESUMO

Today, many essential industrial processes depend on syngas. Due to a high energy demand and overall cost as well as a dependence on natural gas as its precursor, alternative routes to produce this valuable mixture of hydrogen and carbon monoxide are urgently needed. Electrochemical syngas production via two competing processes, namely carbon dioxide (CO2) reduction and hydrogen (H2) evolution, is a promising method. Often, noble metal catalysts such as gold or silver are used, but those metals are costly and have limited availability. Here, we show that metal-organic chalcogenolate assemblies (MOCHAs) combine several properties of successful electrocatalysts. We report a scalable microwave-assisted synthesis method for highly crystalline MOCHAs ([AgXPh] ∞: X = Se, S) with high yields. The morphology, crystallinity, chemical and structural stability are thoroughly studied. We investigate tuneable syngas production via electrocatalytic CO2 reduction and find the MOCHAs show a maximum Faraday efficiency (FE) of 55 and 45% for the production of carbon monoxide and hydrogen, respectively.

9.
ACS Omega ; 8(2): 2027-2033, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687027

RESUMO

Co-doping represents a valid approach to maximize the performance of photocatalytic and photoelectrocatalytic semiconductors. Albeit theoretical predictions in hematite suggesting a bulk n-type doping and a surface p-type doping would deliver best results, hematite co-doping with coupled cations possessing low and high oxidation states has shown promising results. Herein, we report, for the first time, Sb and Li co-doping of hematite photoanodes. Particularly, this is also a seminal work for the introduction of the highly reactive Sb5+ directly into the hematite thin films. Upon co-doping, we have a synergistic effect on the current densities with a 67-fold improvement over the standard. Via a combined investigation with profuse photoelectrochemical measurements, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman analyses, we confirm the two doping roles of Sb5+ and Li+ as the substitutional and interstitial dopant, respectively. The improvements are attributed to a higher charge carrier concentration along with a lower charge transfer resistance at the surface.

10.
J Inorg Biochem ; 239: 112067, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423394

RESUMO

A series of five decavanadates (V10) using a simple, one-pot synthesis, adhering to the model template: transition metal ion - decavanadate - ligands:(Hnicotinamide)2{[Co(H2O)3(nicotinamide)2]2[µ-V10O28]}.6H2O (1), {[Co(H2O)4(isonicotinamide)2]3}V10O28·4H2O (2), {[Co(H2O)4]2[Co(H2O)2(µ-pyrazinamide)2][µ-V10O28]}·4H2O (3) {[Co(H2O)4(µ-pyrazinamide)]3.V10O28}·4H2O (4), and (NH4)2{[Ni(H2O)4(2-hydroxyethylpyridine)]2}V10O28·2H2O (5) was synthesized. X-ray analysis reveals that 1 and 3 are decavanadato complexes, while 2, 4 and 5 are decavanadate complex salts. Moreover, 3 is the first example of a polymeric decavanadato complex, employing direct coordination with the metal center and the organic ligand, in toto. From the solution studies using 51V NMR spectroscopy, it was decoded that 1 and 3 stay stable in the model buffer solution and aqueous media. Binding to model proteins, cytotoxicity and water oxidation catalysis (WOC) was studied primarily for 1 and 3 and concluded that neither 1 nor 3 have an interaction with the model proteins thaumatin, lysozyme and proteinase K, because of the presence of the organic ligands in the Co(II) center, any further interplay with the proteins was blocked. Cytotoxicity studies reveal that 1 is 40% less toxic (0.05 mM) and 26% less toxic (0.1 mM) than the uncoordinated V10 with human cell lines A549 and HeLa respectively. In WOC, 1 performed superior activity, by evolving 143.37 nmol of O2 which is 700% (9-fold) increase than the uncoordinated V10.


Assuntos
Cobalto , Vanadatos , Humanos , Vanadatos/química , Cobalto/química , Água/química , Ligantes , Pirazinamida , Ânions , Catálise
11.
J Hazard Mater ; 442: 130127, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303355

RESUMO

The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Purificação da Água , Poluentes Orgânicos Persistentes , Purificação da Água/métodos , Adsorção , Poluentes Ambientais/química , Água
12.
Front Transplant ; 2: 1211916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38993841

RESUMO

Background: The approval of Atezolizumab / Bevacizumab therapy (Atezo/Bev) in 2020 opened up a promising new treatment option for patients with end-stage hepatocellular carcinoma (HCC). However, liver transplant (LTx) patients with HCC are still denied this therapy owing to concerns about ICI-induced organ rejection and lack of regulatory approval. Methods: A prospective observational study at a tertiary liver transplant centre monitored the compassionate, off-label use of Atezo/Bev in a single, stable LTx recipient with non-resectable HCC recurrence. Close clinical, laboratory and immunological monitoring of the patient was performed throughout a four-cycle Atezo/Bev treatment. Measured parameters were selected after a systematic review of the literature on predictive markers for clinical response and risk of graft rejection caused by ICI therapy. Results: 19 articles describing 20 unique predictive biomarkers were identified. The most promising negative prognostic factors were the baseline values and dynamic course of IL-6, alpha-fetoprotein (AFP) and the AFP/CRP ratio. The frequency of regulatory T cells (Treg) reportedly correlates with the success of ICI therapy. PD-L1 and CD28 expression level with the allograft, peripheral blood CD4+ T cell numbers and Torque Teno Virus (TTV) titre may predict risk of LTx rejection following ICI therapy. No relevant side effects or acute rejection occurred during Atezo/Bev therapy; however, treatment did not prevent tumor progression. Absence of PD-L1 expression in pre-treatment liver biopsies, as well as a progressive downregulation of CD28 expression by CD4+ T cells during therapy, correctly predicted absence of rejection. Furthermore, increased IL-6 and AFP levels after starting therapy, as well as a reduction in blood Treg frequency, correctly anticipated a lack of therapeutic response. Conclusion: Atezo/Bev therapy for unresectable HCC in stable LTx patients remains a controversial strategy because it carries a high-risk of rejection and therapeutic response rates are poorly defined. Although previously described biomarkers of rejection risk and therapeutic response agreed with clinical outcomes in the described case, these immunological parameters are difficult to reliably interpret. Clearly, there is an important unmet need for standardized assays and clinically validated cut-offs before we use these biomarkers to guide treatment decisions for our patients.

13.
NPJ 2D Mater Appl ; 7(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665487

RESUMO

The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.

14.
J Mater Chem C Mater ; 10(45): 17048-17052, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36561542

RESUMO

We report two Ni12 multicubane topologies enclosed in the polyanions [Ni12(OH)9(WO4)3(PO4)(B-α-PW9O34)3]21-{Ni12W30} and [Ni12(OH)9(HPO4)3(PO4)(B-α-PW9O34)(A-α-PW9O34)2]21-{Ni12W27} that magnetically behave as Ni12 units clearly distinguishing them from typical Ni4 cubanes as shown by magnetic studies together with high field and frequency electron paramagnetic resonance (HFEPR). Beyond the unprecedented static properties, {Ni12W30} shows the unusual coexistence of slow relaxation of the magnetization and a diamagnetic ground state (S = 0), providing the unique opportunity of studying the essentially elusive magnetic relaxation behavior in excited states. The cubane-topology dependent activity of {Ni12W30} and {Ni12W27} as homogeneous HER photocatalysts unveils the structural key features significant for the design of photocatalysts with efficient charge utilization exemplified by high quantum yields (QY) of 10.42% and 8.36% for {Ni12W30} and {Ni12W27}, respectively.

15.
Org Process Res Dev ; 26(10): 2799-2810, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36311380

RESUMO

We present a continuous flow method for the conversion of bioderived limonene oxide and limonene dioxide to limonene carbonates using carbon dioxide in its supercritical state as a reagent and sole solvent. Various ammonium- and imidazolium-based ionic liquids were initially investigated in batch mode. For applying the best-performing and selective catalyst tetrabutylammonium chloride in continuous flow, the ionic liquid was physisorbed on mesoporous silica. In addition to the analysis of surface area and pore size distribution of the best-performing supported ionic liquid phase (SILP) catalysts via nitrogen physisorption, SILPs were characterized by diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric analysis and served as heterogeneous catalysts in continuous flow. Initially, the continuous flow conversion was optimized in short-term experiments resulting in the desired constant product outputs. Under these conditions, the long-term behavior of the SILP system was studied for a period of 48 h; no leaching of catalyst from the supporting material was observed in the case of limonene oxide and resulted in a yield of 16%. For limonene dioxide, just traces of leached catalysts were detected after reducing the catalyst loading from 30 to 15 wt %, thus enabling a constant product output in 17% yield over time.

16.
ACS Mater Au ; 2(4): 505-515, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35856075

RESUMO

The ongoing transition to renewable energy sources and the implementation of artificial photosynthetic setups call for an efficient and stable water oxidation catalyst (WOC). Here, we heterogenize a molecular all-inorganic [CoIIICoII(H2O)W11O39]7- ({CoIIICoIIW11}) Keggin-type polyoxometalate (POM) onto a model TiO2 surface, employing a 3-aminopropyltriethoxysilane (APTES) linker to form a novel heterogeneous photosystem for light-driven water oxidation. The {CoIIICoIIW11}-APTES-TiO2 hybrid is characterized using a set of spectroscopic and microscopic techniques to reveal the POM integrity and dispersion to elucidate the POM/APTES and APTES/TiO2 binding modes as well as to visualize the attachment of individual clusters. We conduct photocatalytic studies under heterogeneous and homogeneous conditions and show that {CoIIICoIIW11}-APTES-TiO2 performs as an active light-driven WOC, wherein {CoIIICoIIW11} acts as a stable co-catalyst for water oxidation. In contrast to the homogeneous WOC performance of this POM, the heterogenized photosystem yields a constant WOC rate for at least 10 h without any apparent deactivation, demonstrating that TiO2 not only stabilizes the POM but also acts as a photosensitizer. Complementary studies using photoluminescence (PL) emission spectroscopy elucidate the charge transfer mechanism and enhanced WOC activity. The {CoIIICoIIW11}-APTES-TiO2 photocatalyst serves as a prime example of a hybrid homogeneous-heterogeneous photosystem that combines the advantages of solid-state absorbers and well-defined molecular co-catalysts, which will be of interest to both scientific communities and applications in photoelectrocatalysis and CO2 reduction.

17.
ACS Catal ; 12(11): 6641-6650, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35692252

RESUMO

Achieving light-driven splitting of water with high efficiency remains a challenging task on the way to solar fuel exploration. In this work, to combine the advantages of heterogeneous and homogeneous photosystems, we covalently anchor noble-metal- and carbon-free thiomolybdate [Mo3S13]2- clusters onto photoactive metal oxide supports to act as molecular co-catalysts for photocatalytic water splitting. We demonstrate that strong and surface-limited binding of the [Mo3S13]2- to the oxide surfaces takes place. The attachment involves the loss of the majority of the terminal S2 2- groups, upon which Mo-O-Ti bonds with the hydroxylated TiO2 surface are established. The heterogenized [Mo3S13]2- clusters are active and stable co-catalysts for the light-driven hydrogen evolution reaction (HER) with performance close to the level of the benchmark Pt. Optimal HER rates are achieved for 2 wt % cluster loadings, which we relate to the accessibility of the TiO2 surface required for efficient hole scavenging. We further elucidate the active HER sites by applying thermal post-treatments in air and N2. Our data demonstrate the importance of the trinuclear core of the [Mo3S13]2- cluster and suggest bridging S2 2- and vacant coordination sites at the Mo centers as likely HER active sites. This work provides a prime example for the successful heterogenization of an inorganic molecular cluster as a co-catalyst for light-driven HER and gives the incentive to explore other thio(oxo)metalates.

18.
Nat Commun ; 13(1): 282, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022390

RESUMO

Metal-organic frameworks (MOFs) are commended as photocatalysts for H2 evolution and CO2 reduction as they combine light-harvesting and catalytic functions with excellent reactant adsorption capabilities. For dynamic processes in liquid phase, the accessibility of active sites becomes a critical parameter as reactant diffusion is limited by the inherently small micropores. Our strategy is to introduce additional mesopores by selectively removing one ligand in mixed-ligand MOFs via thermolysis. Here we report photoactive MOFs of the MIL-125-Ti family with two distinct mesopore architectures resembling either large cavities or branching fractures. The ligand removal is highly selective and follows a 2-step process tunable by temperature and time. The introduction of mesopores and the associated formation of new active sites have improved the HER rates of the MOFs by up to 500%. We envision that this strategy will allow the purposeful engineering of hierarchical MOFs and advance their applicability in environmental and energy technologies.

19.
ACS Appl Mater Interfaces ; 14(4): 5183-5193, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073689

RESUMO

All-inorganic CsPbI3 perovskites have great potential in tandem cells in combination with other photovoltaic devices. However, CsPbI3 perovskite solar cells (PSCs) still face a huge challenge, resulting in a low power conversion efficiency (PCE) relative to organic-inorganic PSCs. In this work, we introduced tetrabutylammonium acetate (TBAAc) as a buffer layer between the SnO2 electron-transport layer (ETL) and CsPbI3 all-inorganic perovskite film interface for the first time. TBAAc not only improved the conductivity of SnO2 ETL but also formed a 1D TBAPbI3 layer between the SnO2 ETL and the 3D CsPbI3 all-inorganic perovskite film, thereby enhancing the stability and passivating the surface defects of the CsPbI3 perovskite to fabricate high-efficiency carbon-counter electrode (CE)-based CsPbI3 solar cells. We fabricated carbon-CE-based hole-transporting layer ( HTL)-free PSCs with an FTO/SnO2/TBAAc/CsPbI3/C structure. The open-circuit voltage (Voc), short circuit current density (Jsc), PCE, and fill factor of the champion CsPbI3 PSCs simultaneously enhanced to 1.08 V, 17.48 mA/cm2, 12.79, and 67.8%, respectively. This PCE is currently one of the high efficiencies reported for the above planar-structured carbon-CE-based CsPbI3 PSCs to date. Moreover, the optimized device exhibits excellent stability, which retained over 83% of its initial PCE after 350 h. This work provides a facile way of simultaneous optimization of the SnO2 ETL and the CsPbI3 perovskite layer to fabricate stable and high-efficiency carbon-CE-based CsPbI3 PSCs.

20.
ACS Omega ; 6(50): 34301-34313, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963916

RESUMO

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface-oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer- or foil-type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma-electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to ∼40 µm width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered µm-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...