Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1111404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824463

RESUMO

Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.

2.
Anim Microbiome ; 3(1): 81, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838149

RESUMO

BACKGROUND: Fish gut microbial colonisation starts during larval stage and plays an important role in host's growth and health. To what extent first colonisation could influence the gut microbiome succession and growth in later life remains unknown. In this study, Nile tilapia embryos were incubated in two different environments, a flow-through system (FTS) and a biofloc system (BFS); hatched larvae were subsequently cultured in the systems for 14 days of feeding (dof). Fish were then transferred to one common recirculating aquaculture system (RAS1, common garden, 15-62 dof), followed by a growth trial in another RAS (RAS2, growth trial, 63-105 dof). In RAS2, fish were fed with two types of diet, differing in non-starch polysaccharide content. Our aim was to test the effect of rearing environment on the gut microbiome development, nutrient digestibility and growth performance of Nile tilapia during post-larvae stages. RESULTS: Larvae cultured in the BFS showed better growth and different gut microbiome, compared to FTS. After the common garden, the gut microbiome still showed differences in species composition, while body weight was similar. Long-term effects of early life rearing history on fish gut microbiome composition, nutrient digestibility, nitrogen and energy balances were not observed. Still, BFS-reared fish had more gut microbial interactions than FTS-reared fish. A temporal effect was observed in gut microbiome succession during fish development, although a distinct number of core microbiome remained present throughout the experimental period. CONCLUSION: Our results indicated that the legacy effect of first microbial colonisation of the fish gut gradually disappeared during host development, with no differences in gut microbiome composition and growth performance observed in later life after culture in a common environment. However, early life exposure of larvae to biofloc consistently increased the microbial interactions in the gut of juvenile Nile tilapia and might possibly benefit gut health.

3.
FEMS Microbiol Ecol ; 60(2): 207-19, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17371322

RESUMO

In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. Bacteria were produced in growth reactors under different conditions: 7 h hydraulic retention time (HRT) vs. 2 h, sodium acetate vs. molasses, and ammonia vs. nitrate. The community of the drumfilter effluent was different from those found in the reactors. However, all major community components were present in the effluent and reactor broths. HRT influenced the bacteria community, resulting in a DGGE profile dominated by a band corresponding to an Acinetobacter sp.-related population at 2 h HRT compared to 7 h HRT, where bands indicative of alpha-proteobacterial populations most closely related to Rhizobium and Shinella spp. were most abundant. Molasses influenced the bacterial community. It was dominated by an Aquaspirillum serpens-related population. Providing total ammonia nitrogen (TAN) in addition to nitrate led to the occurrence of bacteria close to Sphaerotilus spp., Flavobacterium mizutaii and Jonesia spp. It was concluded from these results that a 6-7 h HRT is recommended, and that the type of substrate is less important, and results in communities with a comparably low pathogenic risk.


Assuntos
Aquicultura/métodos , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Amônia/farmacologia , Animais , Aquicultura/instrumentação , Bactérias/efeitos dos fármacos , DNA Bacteriano/química , DNA Bacteriano/genética , Ecossistema , Peixes , Melaço , Dados de Sequência Molecular , Nitratos/farmacologia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Acetato de Sódio/farmacologia , Fatores de Tempo , Eliminação de Resíduos Líquidos
4.
Bioresour Technol ; 98(10): 1924-30, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17011777

RESUMO

The drumfilter effluent from a recirculation aquaculture system (RAS) can be used as substrate for heterotrophic bacteria production. This biomass can be re-used as aquatic feed. RAS effluents are rich in nitrate and low in total ammonia nitrogen (TAN). This might result in 20% lower bacteria yields, because nitrate conversion into bacteria is less energy efficient than TAN conversion. In this study the influence of TAN concentrations (1, 12, 98, 193, 257mgTAN/l) and stable nitrate-N concentrations (174+/-29mg/l) on bacteria yields and nitrogen conversions was investigated in a RAS under practical conditions. The effluent slurry was supplemented with 1.7gC/l sodium acetate, due to carbon deficiency, and was converted continuously in a suspended bacteria growth reactor (hydraulic retention time 6h). TAN utilization did not result in significantly different observed yields than nitrate (0.24-0.32gVSS/gC, p=0.763). However, TAN was preferred compared to nitrate and was converted to nearly 100%, independently of TAN concentrations. TAN and nitrate conversions rates were differing significantly for increasing TAN levels (p<0.000 and p=0.012), and were negatively correlated. It seems, therefore, equally possible to supply the nitrogenous substrate for bacteria conversion as nitrate and not as TAN. The bacteria reactor can, as a result, be integrated into an existing RAS as end of pipe treatment.


Assuntos
Amônia/análise , Aquicultura , Bactérias/metabolismo , Peixes/metabolismo , Processos Heterotróficos , Nitratos/análise , Eliminação de Resíduos , Animais , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Resíduos
5.
Water Res ; 40(14): 2684-94, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16814361

RESUMO

The effluent from the drumfilter of a recirculation aquaculture system was used as substrate to produce heterotrophic bacteria in suspended growth reactors. The effects of organic carbon supplementation (0, 3, 6, 8 g/l sodium acetate) and of hydraulic retention times (11-1h) on bacteria biomass production and nutrient conversion were investigated. Bacteria production, expressed as volatile suspended solids (VSS), was enhanced by organic carbon supplementation, resulting in a production of 55-125 g VSS/kg fish feed (0.2-0.5 g VSS/g carbon). Maximum observed crude protein production was approximately 100 g protein/kg fish feed. The metabolic maintenance costs were 0.08 Cmol/Cmol h, and the maximum growth rate was 0.25-0.5 h(-1). Ninety percent of the inorganic nitrogenous and 80% of ortho-phosphate were converted. Producing bacteria on the drumfilter effluent results in additional protein retention and lowers overall nutrient discharge from recirculation aquaculture systems.


Assuntos
Aquicultura/métodos , Bactérias/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Processos Heterotróficos , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/metabolismo , Animais , Aquicultura/instrumentação , Peixes , Especificidade por Substrato , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...