Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 10(4): 487-497, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188264

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Músculo Esquelético/patologia , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/patologia , Adulto , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Linhagem Celular Transformada , Criança , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteína MyoD/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA/metabolismo
2.
Diabetes ; 64(9): 3121-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25695947

RESUMO

Inflammation and lipid accumulation are hallmarks of muscular pathologies resulting from metabolic diseases such as obesity and type 2 diabetes. During obesity, the hypertrophy of visceral adipose tissue (VAT) contributes to muscle dysfunction, particularly through the dysregulated production of adipokines. We have investigated the cross talk between human adipocytes and skeletal muscle cells to identify mechanisms linking adiposity and muscular dysfunctions. First, we demonstrated that the secretome of obese adipocytes decreased the expression of contractile proteins in myotubes, consequently inducing atrophy. Using a three-dimensional coculture of human myotubes and VAT adipocytes, we showed the decreased expression of genes corresponding to skeletal muscle contractility complex and myogenesis. We demonstrated an increased secretion by cocultured cells of cytokines and chemokines with interleukin (IL)-6 and IL-1ß as key contributors. Moreover, we gathered evidence showing that obese subcutaneous adipocytes were less potent than VAT adipocytes in inducing these myotube dysfunctions. Interestingly, the atrophy induced by visceral adipocytes was corrected by IGF-II/insulin growth factor binding protein-5. Finally, we observed that the skeletal muscle of obese mice displayed decreased expression of muscular markers in correlation with VAT hypertrophy and abnormal distribution of the muscle fiber size. In summary, we show the negative impact of obese adipocytes on muscle phenotype, which could contribute to muscle wasting associated with metabolic disorders.


Assuntos
Adipócitos/metabolismo , Proteínas Contráteis/metabolismo , Gordura Intra-Abdominal/citologia , Fibras Musculares Esqueléticas/metabolismo , Obesidade Mórbida/metabolismo , Adipócitos/imunologia , Adulto , Animais , Atrofia/imunologia , Atrofia/metabolismo , Técnicas de Cocultura , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Obesos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/patologia , Obesidade Mórbida/imunologia , Gordura Subcutânea/citologia , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Dev Cell ; 18(4): 643-54, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412778

RESUMO

Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Diferenciação Celular , Embrião de Galinha , Hibridização In Situ , Camundongos , Modelos Biológicos , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Tendões/patologia
4.
PLoS One ; 5(12): e14441, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203432

RESUMO

BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.


Assuntos
Linhagem da Célula , Mioblastos/citologia , Antígeno CD56/metabolismo , Comunicação Celular , Diferenciação Celular , Separação Celular , Células Cultivadas , Simulação por Computador , Metilação de DNA , Citometria de Fluxo , Humanos , Modelos Biológicos , Fenótipo , Processos Estocásticos , Superóxidos/metabolismo
5.
Dev Dyn ; 229(3): 449-57, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14991700

RESUMO

Tendons are collagen-rich structures that link muscle to cartilage. By using quail-chick chimeras, it has been shown that tendon and cartilage cells originate from the same mesodermic compartment, which is distinct from that giving rise to muscle cells. Axial tendons originate from the sclerotomal compartment, and limb tendons originate from the lateral plate, whereas axial and limb muscles derive from dermomyotomes. Despite these different embryologic origins, muscle and tendon morphogenesis occurs in close spatial and temporal association. Facilitated by the distinct embryologic origin of myogenic and tendon cells, surgical studies in the avian embryo have highlighted interactions between tendons and muscles, during embryonic development. However, these interactions seem to differ between axial and limb levels. The molecular mechanisms underlying muscle and tendon interactions have been shown recently to involve different members of the fibroblast growth factor family. This review covers the available data on the early steps of tendon formation in the limb and along the primary axis. The relationship with muscle morphogenesis will be highlighted.


Assuntos
Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Embrião de Galinha , Quimera , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Músculos/citologia , Músculos/metabolismo , Codorniz , Transdução de Sinais , Tendões/embriologia , Tendões/metabolismo , Fatores de Tempo
6.
Mech Dev ; 116(1-2): 151-5, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12128214

RESUMO

Members of the cysteine-rich protein (CRP) family are evolutionary conserved proteins that have been implicated in the processes of cell proliferation and differentiation via the cytoskeletal proteins. In this paper, we present the dynamic expression pattern of CPR2 transcripts during chick limb bud development. CRP2 transcripts are located in various tissues, including muscle, arteries, cartilage, ligaments and digit tendons and also in the apical ectodermal ridge and feather buds.


Assuntos
Extremidades/embriologia , Proteínas Nucleares/genética , Proteínas , Animais , Cartilagem/embriologia , Embrião de Galinha , Extremidades/irrigação sanguínea , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Ligamentos/embriologia , Codorniz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tendões/embriologia , Transcrição Gênica , Asas de Animais/embriologia
7.
Dev Biol ; 247(2): 351-66, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12086472

RESUMO

In vertebrates, tendons connect muscles to skeletal elements. Surgical experiments in the chick have underlined developmental interactions between tendons and muscles. Initial formation of tendons occurs autonomously with respect to muscle. However, further tendon development requires the presence of muscle. The molecular signals involved in these interactions remain unknown. In the chick limb, Fgf4 transcripts are located at the extremities of muscles, where the future tendons will attach. In this paper, we analyse the putative role of muscle-Fgf4 on tendon development. We have used three general tendon markers, scleraxis, tenascin, and Fgf8 to analyse the regulation of these tendon-associated molecules by Fgf4 under different experimental conditions. In the absence of Fgf4, in muscleless and aneural limbs, the expression of the three tendon-associated molecules, scleraxis, tenascin, and Fgf8, is down-regulated. Exogenous implantation of Fgf4 in normal, aneural, and muscleless limbs induces scleraxis and tenascin expression but not that of Fgf8. These results indicate that Fgf4 expressed in muscle is required for the maintenance of scleraxis and tenascin but not Fgf8 expression in tendons.


Assuntos
Extremidades/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/metabolismo , Tenascina/metabolismo , Fatores de Transcrição/biossíntese , Animais , Proteínas Aviárias , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Embrião de Galinha , Regulação para Baixo , Fator 4 de Crescimento de Fibroblastos , Imuno-Histoquímica , Hibridização In Situ , Músculos/embriologia , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Regulação para Cima , Asas de Animais/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...