Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 276: 114484, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331374

RESUMO

It is well documented that estrogens inhibit fluid intake. Most of this research, however, has focused on fluid intake in response to dipsogenic hormone and/or drug treatments in euhydrated rats. Additional research is needed to fully characterize the fluid intake effects of estradiol in response to true hypovolemia. As such, the goals of this series of experiments were to provide a detailed analysis of water intake in response to water deprivation in ovariectomized female rats treated with estradiol. In addition, these experiments also tested if activation of estrogen receptor alpha is sufficient to reduce water intake stimulated by water deprivation and tested for a role of glucagon like peptide-1 in the estrogenic control of water intake. As expected, estradiol reduced water intake in response to 24 and 48 h of water deprivation. The reduction in water intake was associated with a reduction in drinking burst number, with no change in drinking burst size. Pharmacological activation of estrogen receptor alpha reduced intake. Finally, estradiol-treatment caused a leftward shift in the behavioral dose response curve of exendin-4, the glucagon like peptide-1 agonist. While the highest dose of exendin-4 reduced 10 min intake in both oil and estradiol-treated rats, the intermediate dose only reduced intake in rats treated with estradiol. Together, this series of experiments extends previous research by providing a more thorough behavioral analysis of the anti-dipsogenic effect of estradiol in dehydrated rats, in addition to identifying the glucagon like peptide-1 system as a potential bioregulator involved in the underlying mechanisms by which estradiol reduces water intake in the female rat.


Assuntos
Ingestão de Líquidos , Peptídeo 1 Semelhante ao Glucagon , Animais , Feminino , Ratos , Desidratação , Ingestão de Líquidos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Fatores de Transcrição
2.
Neuroendocrinology ; 113(9): 930-942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37232025

RESUMO

INTRODUCTION: Although the fluid inhibitory effects of estradiol are well characterized, a dipsogenic role of the hormone was recently identified. In ovariectomized (OVX) rats, unstimulated water intake, in the absence of food, was increased after estradiol treatment. METHODS: The goals for these experiments were to further characterize the fluid enhancing effects of estradiol by determining the estrogen receptor subtype mediating the dipsogenic effect, examining saline intake, and testing for a dipsogenic effect of estradiol in male rats. RESULTS: Pharmacological activation of estrogen receptor beta (ERß) increased water intake, in the absence of food, and was associated with changes in postingestive feedback signals. Surprisingly, activation of ERα reduced water intake even in the absence of food. A follow-up study demonstrated that when food was available, co-activation of ERα and ERß reduced water intake, but when food was not available water intake was increased. In addition, in OVX rats, estradiol increased saline intake through changes in postingestive and orosensory feedback signals. Finally, although estradiol decreased water intake in male rats with access to food, estradiol had no effect on water intake in the absence of food. CONCLUSIONS: These results demonstrate that the dipsogenic effect is mediated by ERß, the fluid enhancing effects of estradiol generalize to saline, and is limited to females, which implies that a feminized brain is necessary for estradiol to increase water intake. These findings will aid in guiding future studies focused on elucidating the neuronal mechanisms that allow estradiol to both increase and decrease fluid intake.


Assuntos
Estradiol , Receptor beta de Estrogênio , Masculino , Ratos , Feminino , Animais , Humanos , Estradiol/farmacologia , Estradiol/fisiologia , Receptor alfa de Estrogênio , Seguimentos , Receptores de Estrogênio , Ovariectomia
3.
Physiol Rep ; 9(14): e14948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288542

RESUMO

Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERß, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.


Assuntos
Envelhecimento/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Estradiol/análogos & derivados , Frequência Cardíaca/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Pressão Sanguínea/fisiologia , Ingestão de Líquidos/fisiologia , Estradiol/administração & dosagem , Feminino , Frequência Cardíaca/fisiologia , Ovariectomia/efeitos adversos , Ovariectomia/tendências , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores de Estrogênio/fisiologia
4.
Horm Behav ; 133: 104996, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020111

RESUMO

The inhibitory effect of estradiol (E2) on water intake has been recognized for 50 years. Despite a rich literature describing this phenomenon, we report here a previously unidentified dipsogenic effect of E2 during states of low fluid intake. Our initial goal was to test the hypothesis that the anti-dipsogenic effect of E2 on unstimulated water intake is independent of its anorexigenic effect in female rats. In support of this hypothesis, water intake was reduced during estrus, compared to diestrus, when food was present or absent. Water intake was reduced by E2 in ovariectomized rats when food was available, demonstrating a causative role of E2. Surprisingly, however, when food was removed, resulting in a significant reduction in baseline water intake, E2 enhanced drinking. Accordingly, we next tested the effect of E2 on water intake after an acute suppression of intake induced by exendin-4. The initial rebound drinking was greater in E2-treated, compared to Oil-treated, rats. Finally, to reconcile conflicting reports regarding the effect of ovariectomy on water intake, we measured daily water and food intake, and body weight in ovariectomized and sham-operated rats. Predictably, ovariectomy significantly increased food intake and body weight, but only transiently increased water intake. Together these results provide further support for independent effects of E2 on the controls of water and food intake. More importantly, this report of bidirectional effects of E2 on water intake may lead to a paradigm shift, as it challenges the prevailing view that E2 effects on fluid intake are exclusively inhibitory.


Assuntos
Ingestão de Líquidos , Estradiol , Animais , Peso Corporal , Ingestão de Alimentos , Estradiol/farmacologia , Estrogênios , Feminino , Humanos , Ovariectomia , Ratos
5.
Physiol Behav ; 229: 113262, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232737

RESUMO

The assumption that body weight is a predictor of fluid intake is often used as rationale for normalizing intake to body weight when examining sex differences in drinking behavior. Nonuniform application of this body weight correction likely contributes to discrepancies in the literature. We, however, previously demonstrated sex differences in the relationship between body weight and angiotensin II (AngII)-stimulated water intake. Only after a pharmacological dose of AngII did water intake correlate with body weight, and only in males. Here we investigated whether body weight correlated with fluid intake stimulated by additional dipsogenic agents in male and female rats. We found that intake stimulated by either water deprivation or furosemide correlated with body weight in male rats. We found no relationship between intake and body weight after water deprivation, furosemide treatment, or isoproterenol treatment in females, nor did we find a relationship between intake and body weight after hypertonic saline treatment in either males or females. Finally, we report that daily water intake correlated with body weight in females. This effect, however, is likely the result of a relationship between body weight and food intake because when food was absent or reduced, the correlation between body weight and intake disappeared. These results demonstrate that multiple factors need to be considered when determining the best way to compare fluid intake between males and females and provides insight to help explain the discrepancies in the literature regarding sex differences in fluid intake.


Assuntos
Ingestão de Líquidos , Privação de Água , Angiotensina II , Animais , Peso Corporal , Desidratação , Feminino , Masculino , Ratos
6.
Horm Behav ; 114: 104547, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228420

RESUMO

Dehydration impairs cognitive performance in humans and rodents, although studies in animal models are limited. Estrogens have both protective effects on fluid regulation and improve performance in certain cognitive tasks. We, therefore, tested whether sex and gonadal hormones influence object recognition memory during dehydration. Because past studies used fluid deprivation to induce dehydration, which is a mixture of intracellular and extracellular fluid loss, we tested the effects of osmotic (loss of intracellular fluid) and hypovolemic (loss of extracellular fluid) dehydration on object recognition memory. After training trials consisting of exposure to two identical objects, rats were either treated with hypertonic saline to induce osmotic dehydration, furosemide to induce hypovolemic dehydration, or received a control injection and then object recognition memory was tested by presenting the original and a novel object. After osmotic dehydration, regardless of group or treatment, all rats spent significantly more time investigating the novel object. After hypovolemic dehydration, regardless of treatment, both the males and estrous females spent significantly more time investigating the novel object. While the control-treated diestrous females also spent significantly more time investigating the novel object, the furosemide-treated diestrous females spent a similar amount of time investigating the novel and original object. Follow up studies determined that loss of ovarian hormones after ovariectomy, but not loss of testicular hormones after castration, resulted in impaired memory performance in the object recognition test after hypovolemic dehydration. This series of experiments provides evidence for a protective role of ovarian hormones on dehydration-induced memory impairments.


Assuntos
Desidratação/complicações , Hormônios Gonadais/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Reconhecimento Psicológico/fisiologia , Animais , Desidratação/psicologia , Feminino , Hormônios Gonadais/sangue , Masculino , Transtornos da Memória/sangue , Orquiectomia , Ovariectomia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...