Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0205236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296281

RESUMO

Nest predation is an important determinant of reproductive success and ground-nesting birds exhibit a variety of nest defence strategies to mitigate the risk. Many small-bodied, ground nesting birds rely on deceptive behaviours such as injury-feigning to reduce nest predation: we call this behaviour active deception. However, active deception may entail risks to adults, and passive deceptive behaviour, where individuals effectively sneak away from the nest by flushing at long distances, may be an alternative means of avoiding nest predation. We provide a simple model to demonstrate that these tails of the flush distance distribution could minimize predation risk; an intermediate strategy of moderate flush distances means that birds flush more often than with short-distance flushes, and once flushed, the nest is more easily located than for long-distance flushes. We tested this model using two species of ground nesting shorebirds, the White-rumped Sandpiper (Calidris fuscicollis) and the Red Phalarope (Phalaropus fulicarius). We demonstrate that short-distance flushes are associated with active deception and intermediate-distance flushes are associated with an increased risk of nest predation. However, we found no evidence that this potential selective pressure against intermediate strategies has produced a bimodal distribution of nest defence traits. The heritability of defence behaviours, or the ability of individuals to learn, is unknown and other factors such as energetic constraints or risks to adults might also influence flush distances and defence behaviours.


Assuntos
Comunicação Animal , Charadriiformes/fisiologia , Enganação , Modelos Biológicos , Comportamento de Nidação/fisiologia , Animais , Feminino , Masculino , Comportamento Predatório , Comportamento Sexual Animal/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-23726939

RESUMO

In birds, corticosterone (CORT) appears to facilitate reproductive activity because baseline and stress-induced CORT levels are elevated in breeding individuals compared with other times of the year. In particular, CORT is lower in the sex providing most of the parental care (i.e., incubation), which could be an important adaptation to tolerate stressors that result in abandoning reproduction. Therefore, one explanation for sex differences in CORT is that lower levels are favoured during the incubation/parental phase of reproduction. Using two species of uniparental shorebird - polyandrous red phalaropes (Phalaropus fulicarius) and polygynous white-rumped sandpipers (Calidris fuscicollis) - we predicted that the incubating sex would have lower baseline and stress-induced CORT, and incubating individuals with lower CORT would more effectively defend nests against a simulated intrusion, would return more quickly afterwards, and would ultimately have higher hatch success. We found that phalaropes followed the predicted pattern: incubating individuals (males) had lower baseline and stress-induced CORT than females but for baseline CORT these differences existed prior to males commencing incubation. Incubating male phalaropes with lower baseline and stress-induced CORT returned to incubate more quickly after a disturbance and there was non-significant tendency for baseline CORT to be lower in successful nests. In sandpipers, we observed no sex differences and no significant relationships between individual CORT levels and nest defence behaviours or hatch success. Our results demonstrate that in phalaropes at least, selection favours lower baseline and stress-induced CORT during the nesting period. These results can explain sex differences in stress-induced levels of CORT, however sex differences in baseline CORT were present prior to incubation.


Assuntos
Charadriiformes/sangue , Charadriiformes/fisiologia , Corticosterona/sangue , Comportamento de Nidação/fisiologia , Reprodução/fisiologia , Caracteres Sexuais , Animais , Cruzamento , Feminino , Modelos Lineares , Masculino , Análise de Componente Principal , Estresse Fisiológico
3.
PLoS One ; 7(12): e53066, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300862

RESUMO

Investment in current reproduction should come at the expense of traits promoting future reproduction, such as immunity and longevity. To date, comparative studies of pace-of-life traits have provided some support for this, with slower paced species having greater immune function. Another means of investment in current reproduction is through secondary sexual characters (SSC). Investment in SSC's is considered costly, both in terms of immunity and longevity, with greater costs being borne by species with more elaborate traits. Yet within species, females prefer more ornate males and those males are typically immunologically superior. Because of this, predictions about the relationship between immunity and SSC's across species are not clear. If traits are costly, brighter species should have reduced immune function, but the opposite is true if SSC's arise from selection for more immunocompetent individuals. My approach was to investigate immune investment in relation to SSC's, pace-of-life and longevity while considering potentially confounding ecological factors. To do so I assessed leukocyte counts from in a novel group, the Psittaciformes. Investment in SSC's best explained investment in immunity: species with brighter plumage had higher leukocyte counts and those with a greater degree of sexual dichromatism had fewer. Ecological variables and pace-of-life models tended to be poor predictors of immune investment. However, shorter incubation periods were associated with lower leukocyte counts supporting the notion that species with a fast pace-of-life invest less in immunity. These results suggest that investment in reproduction in terms of fast pace-of-life and sexual dichromatism results in reduced immunity; however, investment in plumage colour per se does not impose a cost on immunity across species.


Assuntos
Sistema Imunitário/fisiologia , Longevidade/fisiologia , Preferência de Acasalamento Animal/fisiologia , Papagaios/fisiologia , Reprodução/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Longevidade/imunologia , Masculino , Papagaios/imunologia , Fenótipo , Reprodução/imunologia , Caracteres Sexuais
4.
Artigo em Inglês | MEDLINE | ID: mdl-20888927

RESUMO

Seabirds differ dramatically in life history traits and breeding strategies. For example, gulls have short incubation shifts (several hours) and high metabolic rates, auks have medium-length incubation shifts (12-24h) and high metabolic rates, and petrels have long incubation shifts (days) and low metabolic rates. How these different strategies affect the dynamics of body components is poorly known. We compared body, organ and lipid mass changes among three different seabirds (gull: black-legged kittiwake Rissa tridactyla; auk: thick-billed murre Uria lomvia; petrel: northern fulmar Fulmarus glacialis) at Prince Leopold Island, Nunavut, Canada during 2002 (a year with low reproductive success and poor chick growth across all three species). This study is among the first to compare mass and lipid dynamics among different species foraging in the same food web and at similar trophic levels during the same breeding season (same environmental conditions). In fulmars and murres, most of decreases in body mass reflected decreases in lipid mass while in kittiwakes the increase in body mass reflected an increase in lean mass, especially the muscle. The species with the longest fasting endurance (incubation shift length) had the highest percent body lipids during incubation (fulmars: 13.3%, murres: 7.3%, kittiwakes: 6.9%), the highest variability in body lipids, tended to regulate body mass primarily through lipid stores and tended to regulate exercise and digestive organs separately. In contrast, in the species with the highest metabolic rate, all organ systems were adjusted similarly and in relation to body mass, and in a similar manner between incubation (stress due to heavy ice conditions) and chick-rearing (lower stress due to ice-free conditions). In high metabolic rate species, we suggest that organ size varies in response to environmental stress. We conclude that the organ dynamics of seabirds are set by a combination of key life history traits (like incubation shift and metabolic rate) and environmental conditions.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Composição Corporal , Meio Ambiente , Reprodução/fisiologia , Animais , Índice de Massa Corporal , Charadriiformes/anatomia & histologia , Charadriiformes/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...