Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 463: 132832, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951165

RESUMO

Computational fluid dynamics simulations are used to model the velocity field and the transport of a passive scalar within a micro-scale chamber used to measure diffusional transport through various building materials. Comparisons of solutions obtained using a steady, laminar flow assumption with velocity measurements obtained from hot-wire anemometry show that the numerical method generally underpredicts the near surface velocity field. The results improve for higher flow rates and for carpeted test materials, modeled as a porous resistive layer. Calculations involving scalar transport within the upper chamber of the sampling device are performed for different flow rates and Schmidt numbers. The results are used to develop a model for the convective mass transfer coefficient, correlated as a function of the Reynolds and Schmidt numbers as well as the porosity of the carpet. This model is integrated into a steady-state mass transport model for predicting the diffusion of gaseous formaldehyde through various test materials. Predictions of diffusion and partition coefficients for vinyl flooring, gypsum wall board, and carpet are within the ranges of literature data. The results indicate that a perfectly mixed upper part of the sampling device is an adequate assumption.

2.
J Propuls Power ; 34(2): 438-448, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33510552

RESUMO

Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high-speed, compressible, and highly turbulent reacting flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine development rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets, aim to isolate the chemical kinetic effects and turbulence-chemistry interaction from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is adopted that produces a uniform fuel-air mixture at the entrance to the combustor and results in premixed combustion. This approach relies on the mixing enhancement of a precombustion shock train upstream of the dual-mode scramjet's combustor. For the first time a stable flame, anchored on a cavity flameholder, is reported for a scramjet combustor operating in premixed fuel-air mode. The new experimental capability has enabled numerous companion studies involving advanced diagnostics such as coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF).

3.
Int J Mass Spectrom ; 300(2-3): 99-107, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21499524

RESUMO

Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 µm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...