Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 110: 109150, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049668

RESUMO

Cocoa flavanols have been shown to improve muscle function and may offer a novel approach to protect against muscle atrophy. Hippuric acid (HA) is a colonic metabolite of (-)-epicatechin (EPI), the primary bioactive compound of cocoa, and may be responsible for the associations between cocoa supplementation and muscle metabolic alterations. Accordingly, we investigated the effects of EPI and HA upon skeletal muscle morphology and metabolism within an in vitro model of muscle atrophy. Under atrophy-like conditions (24h 100µM dexamethasone (DEX)), C2C12 myotube diameter was significantly greater following co-incubation with either 25µM HA (11.19±0.39µm) or 25µM EPI (11.01±0.21µm) compared to the vehicle control (VC; 7.61±0.16µm, both P < .001). In basal and leucine-stimulated states, there was a significant reduction in myotube protein synthesis (MPS) rates following DEX treatment in VC (P = .024). Interestingly, co-incubation with EPI or HA abrogated the DEX-induced reductions in MPS rates, whereas no significant differences versus control treated myotubes (CTL) were noted. Furthermore, co-incubation with EPI or HA partially attenuated the increase in proteolysis seen in DEX-treated cells, preserving LC3 α/ß II:I and caspase-3 protein expression in atrophy-like conditions. The protein content of PGC1α, ACC, and TFAM (regulators of mitochondrial function) were significantly lower in DEX-treated versus. CTL cells (all P < .050). However, co-incubation with EPI or HA was unable to prevent these DEX-induced alterations. For the first time we demonstrate that EPI and HA exert anti-atrophic effects on C2C12 myotubes, providing novel insight into the association between flavanol supplementation and favourable effects on muscle health.


Assuntos
Catequina , Humanos , Catequina/metabolismo , Dexametasona/efeitos adversos , Fibras Musculares Esqueléticas , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Músculo Esquelético/metabolismo
2.
J Appl Physiol (1985) ; 131(6): 1653-1662, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734783

RESUMO

Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day-1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.


Assuntos
Insulina , Músculo Esquelético , Respiração Celular , Citrato (si)-Sintase/metabolismo , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Estresse Oxidativo , Adulto Jovem
3.
J Nutr ; 151(7): 1901-1920, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33851213

RESUMO

BACKGROUND: There is much debate regarding the source/quality of dietary proteins in supporting indices of skeletal muscle anabolism. OBJECTIVE: We performed a systematic review and meta-analysis to determine the effect of protein source/quality on acute muscle protein synthesis (MPS) and changes in lean body mass (LBM) and strength, when combined with resistance exercise (RE). METHODS: A systematic search of the literature was conducted to identify studies that compared the effects of ≥2 dose-matched, predominantly isolated protein sources of varying "quality." Three separate models were employed as follows: 1) protein feeding alone on MPS, 2) protein feeding combined with a bout of RE on MPS, and 3) protein feeding combined with longer-term resistance exercise training (RET) on LBM and strength. Further subgroup analyses were performed to compare the effects of protein source/quality between young and older adults. A total of 27 studies in young (18-35 y) and older (≥60 y) adults were included. RESULTS: Analysis revealed an effect favoring higher-quality protein for postprandial MPS at rest [mean difference (MD): 0.014%/h; 95% CI: 0.006, 0.021; P < 0.001] and following RE (MD: 0.022%/h; 95% CI: 0.014, 0.030; P < 0.00001) in young (model 1: 0.016%/h; 95% CI: -0.004, 0.036; P = 0.12; model 2: 0.030%/h; 95% CI: 0.015, 0.045; P < 0.0001) and older (model 1: 0.012%/h; 95% CI: 0.006, 0.018; P < 0.001; model 2: 0.014%/h; 95% CI: 0.007, 0.021; P < 0.001) adults. However, although higher protein quality was associated with superior strength gains with RET [standardized mean difference (SMD): 0.24 kg; 95% CI: 0.02, 0.45; P = 0.03)], no effect was observed on changes to LBM (SMD: 0.05 kg; 95% CI: -0.16, 0.25; P = 0.65). CONCLUSIONS: The current review suggests that protein quality may provide a small but significant impact on indices of muscle protein anabolism in young and older adults. However, further research is warranted to elucidate the importance of protein source/quality on musculoskeletal aging, particularly in situations of low protein intake.


Assuntos
Força Muscular , Treinamento Resistido , Idoso , Composição Corporal , Proteínas Alimentares/metabolismo , Humanos , Músculo Esquelético/metabolismo
4.
Am J Physiol Cell Physiol ; 321(1): C26-C37, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909501

RESUMO

In vitro models of muscle aging are useful for understanding mechanisms of age-related muscle loss and aiding the development of targeted therapies. To investigate mechanisms of age-related muscle loss in vitro utilizing ex vivo human serum, fasted blood samples were obtained from four old (72 ± 1 yr) and four young (26 ± 3 yr) men. Older individuals had elevated levels of plasma CRP, IL-6, HOMA-IR, and lower concentric peak torque and work-per-repetition compared with young participants (P < 0.05). C2C12 myotubes were serum and amino acid starved for 1 h and conditioned with human serum (10%) for 4 h or 24 h. After 4 h, C2C12 cells were treated with 5 mM leucine for 30 min. Muscle protein synthesis (MPS) was determined through the surface sensing of translation (SUnSET) technique and regulatory signaling pathways were measured via Western blot. Myotube diameter was significantly reduced in myotubes treated with serum from old, in comparison to young donors (84%, P < 0.001). MPS was reduced in myotubes treated with old donor serum, compared with young serum before leucine treatment (32%, P < 0.01). MPS and the phosphorylation of Akt, p70S6K, and eEF2 were increased in myotubes treated with young serum in response to leucine treatment, with a blunted response identified in cells treated with old serum (P < 0.05). Muscle protein breakdown signaling pathways did not differ between groups. In summary, we show that myotubes conditioned with serum from older individuals had decreased myotube diameter and MPS compared with younger individuals, potentially driven by low-grade systemic inflammation.


Assuntos
Envelhecimento/genética , Meios de Cultura/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Biossíntese de Proteínas/efeitos dos fármacos , Adulto , Idoso , Envelhecimento/metabolismo , Animais , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Linhagem Celular , Meios de Cultura/química , Humanos , Resistência à Insulina , Interleucina-6/sangue , Interleucina-6/genética , Leucina/farmacologia , Masculino , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais
5.
J Cachexia Sarcopenia Muscle ; 12(1): 52-69, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347733

RESUMO

BACKGROUND: Poor recovery from periods of disuse accelerates age-related muscle loss, predisposing individuals to the development of secondary adverse health outcomes. Exercise prior to disuse (prehabilitation) may prevent muscle deterioration during subsequent unloading. The present study aimed to investigate the effect of short-term resistance exercise training (RET) prehabilitation on muscle morphology and regulatory mechanisms during 5 days of bed rest in older men. METHODS: Ten healthy older men aged 65-80 years underwent four bouts of high-volume unilateral leg RET over 7 days prior to 5 days of inpatient bed rest. Physical activity and step-count were monitored over the course of RET prehabilitation and bed rest, whilst dietary intake was recorded throughout. Prior to and following bed rest, quadriceps cross-sectional area (CSA), and hormone/lipid profiles were determined. Serial muscle biopsies and dual-stable isotope tracers were used to determine integrated myofibrillar protein synthesis (iMyoPS) over RET prehabilitation and bed rest phases, and acute postabsorptive and postprandial myofibrillar protein synthesis (aMyoPS) rates at the end of bed rest. RESULTS: During bed rest, daily step-count and light and moderate physical activity time decreased, whilst sedentary time increased when compared with habitual levels (P < 0.001 for all). Dietary protein and fibre intake during bed rest were lower than habitual values (P < 0.01 for both). iMyoPS rates were significantly greater in the exercised leg (EX) compared with the non-exercised control leg (CTL) over prehabilitation (1.76 ± 0.37%/day vs. 1.36 ± 0.18%/day, respectively; P = 0.007). iMyoPS rates decreased similarly in EX and CTL during bed rest (CTL, 1.07 ± 0.22%/day; EX, 1.30 ± 0.38%/day; P = 0.037 and 0.002, respectively). Postprandial aMyoPS rates increased above postabsorptive values in EX only (P = 0.018), with no difference in delta postprandial aMyoPS stimulation between legs. Quadriceps CSA at 40%, 60%, and 80% of muscle length decreased significantly in EX and CTL over bed rest (0.69%, 3.5%, and 2.8%, respectively; P < 0.01 for all), with no differences between legs. No differences in fibre-type CSA were observed between legs or with bed rest. Plasma insulin and serum lipids did not change with bed rest. CONCLUSIONS: Short-term resistance exercise prehabilitation augmented iMyoPS rates in older men but did not offset the relative decline in iMyoPS and muscle mass during bed rest.


Assuntos
Repouso em Cama , Idoso , Idoso de 80 Anos ou mais , Repouso em Cama/efeitos adversos , Exercício Físico , Humanos , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Exercício Pré-Operatório
6.
Am J Clin Nutr ; 112(5): 1368-1381, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910813

RESUMO

BACKGROUND: Unavoidable periods of disuse lead to muscle atrophy and functional decline. Preventing such declines can reduce the risk of re-injury and improve recovery of normal physiological functioning. OBJECTIVES: We aimed to determine the effectiveness of high-dose leucine supplementation on muscle morphology and strength during 7 d of unilateral lower-limb immobilization, and the role of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis in disuse atrophy. METHODS: Sixteen healthy males (mean ± SEM age: 23 ± 1 y) underwent 7 d of unilateral lower-limb immobilization, with thrice-daily leucine (LEU; n = 8) or placebo (PLA; n = 8) supplementation (15 g/d). Before and after immobilization, muscle strength and compartmental tissue composition were assessed. A primed continuous infusion of l-[ring-13C6]-phenylalanine with serial muscle biopsies was used to determine postabsorptive and postprandial (20 g milk protein) MyoPS and MitoPS, fiber morphology, markers of protein turnover, and mitochondrial function between the control leg (CTL) and the immobilized leg (IMB). RESULTS: Leg fat-free mass was reduced in IMB (mean ± SEM: -3.6% ± 0.5%; P = 0.030) but not CTL with no difference between supplementation groups. Isometric knee extensor strength declined to a greater extent in IMB (-27.9% ± 4.4%) than in CTL (-14.3% ± 4.4%; P = 0.043) with no difference between groups. In response to 20 g milk protein, postprandial MyoPS rates were significantly lower in IMB than in CTL (-22% ± 4%; P < 0.01) in both LEU and PLA. Postabsorptive MyoPS rates did not differ between legs or groups. Postabsorptive MitoPS rates were significantly lower in IMB than in CTL (-14% ± 5%; P < 0.01) and postprandial MitoPS rates significantly declined in response to 20 g milk protein ingestion (CTL: -10% ± 8%; IMB: -15% ± 10%; P = 0.039), with no differences between legs or groups. There were no significant differences in measures of mitochondrial respiration between legs, but peroxisome proliferator-activated receptor γ coactivator 1-α and oxidative phosphorylation complex II and III were significantly lower in IMB than in CTL (P < 0.05), with no differences between groups. CONCLUSIONS: High-dose leucine supplementation (15 g/d) does not appear to attenuate any functional declines associated with 7 d of limb immobilization in young, healthy males.This trial was registered at clinicaltrials.gov as NCT03762278.


Assuntos
Suplementos Nutricionais , Leucina/farmacologia , Força Muscular/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Imobilização , Leucina/administração & dosagem , Masculino , Adulto Jovem
7.
Chemistry ; 22(6): 2004-2011, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748870

RESUMO

Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two-carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6 . Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane-aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer.

8.
Angew Chem Int Ed Engl ; 54(15): 4592-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25690527

RESUMO

Exceptionally powerful anion receptors have been constructed by placing squaramide groups in axial positions on a steroidal framework. The steroid preorganizes the squaramide NH groups such that they can act cooperatively on a bound anion, while maintaining solubility in nonpolar media. The acidic NH groups confer higher affinities than previously-used ureas or thioureas. Binding constants exceeding 10(14) M(-1) have been measured for tetraethylammonium salts in chloroform by employing a variation of Cram's extraction procedure. The receptors have also been studied as transmembrane anion carriers in unilamellar vesicles. Unusually their activities do not correlate with anion affinities, thus suggesting an upper limit for binding strength in the design of anion carriers.

9.
Angew Chem Int Ed Engl ; 51(16): 3901-4, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22392806

RESUMO

trans-2,8-Dioxabicyclodecanes were prepared in high yield with the creation of up to three stereocenters in a single pot by the acid-mediated reaction of γ,δ-unsaturated alcohols with aldehydes (see scheme, Bn=benzyl). This versatile reaction enables the stereoselective introduction of substituents at the C3, C4, C7, and C9 positions of the bicyclic framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...