Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 24(12): 2076-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434928

RESUMO

The metalloprotease PrtV from Vibrio cholerae serves an important function for the ability of bacteria to invade the mammalian host cell. The protein belongs to the family of M6 proteases, with a characteristic zinc ion in the catalytic active site. PrtV constitutes a 918 amino acids (102 kDa) multidomain pre-pro-protein that undergoes several N- and C-terminal modifications to form a catalytically active protease. We report here the NMR structure of the PrtV N-terminal domain (residues 23-103) that contains two short α-helices in a coiled coil motif. The helices are held together by a cluster of hydrophobic residues. Approximately 30 residues at the C-terminal end, which were predicted to form a third helical structure, are disordered. These residues are highly conserved within the genus Vibrio, which suggests that they might be functionally important.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeo Hidrolases/química , Vibrio cholerae/enzimologia , Domínio Catalítico , Sequência Conservada , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vibrio cholerae/química
2.
Protein Expr Purif ; 96: 39-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24492010

RESUMO

The metalloprotease PrtV from Vibrio cholerae serves an important function for the bacteria's ability to invade the mammalian host cell. The protein belongs to the family of M6 proteases, with a characteristic zinc ion in the catalytic active site. PrtV constitutes a 918 amino acids (102 kDa) multidomain pre-pro-protein that so far has only been expressed in V. cholerae. Structural studies require high amounts of soluble protein with high purity. Previous attempts for recombinant expression have been hampered by low expression and solubility of protein fragments. Here, we describe results from parallel cloning experiments in Escherichia coli where fusion tagged constructs of PrtV fragments were designed, and protein products tested for expression and solubility. Of more than 100 designed constructs, three produced protein products that expressed well. These include the N-terminal domain (residues 23-103), the PKD1 domain (residues 755-839), and a 25 kDa fragment (residues 581-839). The soluble fusion proteins were captured with Ni²âº affinity chromatography, and subsequently cleaved with tobacco etch virus protease. Purification protocols yielded ∼10-15 mg of pure protein from 1L of culture. Proper folding of the shorter domains was confirmed by heteronuclear NMR spectra recorded on ¹5N-labeled samples. A modified protocol for the native purification of the secreted 81 kDa pro-protein of PrtV is provided. Proteolytic activity measurements suggest that the 37 kDa catalytic metalloprotease domain alone is sufficient for activity.


Assuntos
Escherichia coli/metabolismo , Peptídeo Hidrolases/genética , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Domínio Catalítico/genética , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos , Dados de Sequência Molecular , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Peptídeo Hidrolases/biossíntese , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes de Fusão/biossíntese , Alinhamento de Sequência , Vibrio cholerae/patogenicidade
3.
FEBS Open Bio ; 3: 263-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23905008

RESUMO

Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755-838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca(2+)-binding site located near linker regions between domains. Conformational changes in the Ca(2+)-free and Ca(2+)-bound forms suggest that Ca(2+)-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...