Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2306389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909315

RESUMO

Open-shell conjugated polymers (CPs) offer new opportunities for the development of emerging technologies that utilize the spin degree of freedom. Their light-element composition, weak spin-orbit coupling, synthetic modularity, high chemical stability, and solution-processability offer attributes that are unavailable from other semiconducting materials. However, developing an understanding of how electronic structure correlates with emerging transport phenomena remains central to their application. Here, the first connections between molecular, electronic, and solid-state transport in a high-spin donor-acceptor CP, poly(4-(4-(3,5-didodecylbenzylidene)-4H-cyclopenta[2,1-b:3,4-b']dithiophen-2-yl)-6,7-dimethyl-[1,2,5]-thiadiazolo[3,4-g]quinoxaline), are provided. At low temperatures (T < 180 K), a giant negative magnetoresistance (MR) is achieved in a thin-film device with a value of -98% at 10 K, which surpasses the performance of all other organic materials. The thermal depopulation of the high-spin manifold and negative MR decrease as temperature increases and at T > 180 K, the MR becomes positive with a relatively large MR of 13.5% at room temperature. Variable temperature electron paramagnetic resonance spectroscopy and magnetic susceptibility measurements demonstrate that modulation of both the sign and magnitude of the MR correlates with the electronic and spin structure of the CP. These results indicate that donor-acceptor CPs with open-shell and high-spin ground states offer new opportunities for emerging spin-based applications.

2.
Adv Sci (Weinh) ; 10(36): e2304077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888896

RESUMO

Photodetectors operating across the short-, mid-, and long-wave infrared (SWIR-LWIR, λ = 1-14 µm) underpin modern science, technology, and society in profound ways. Narrow bandgap semiconductors that form the basis for these devices require complex manufacturing, high costs, cooling, and lack compatibility with silicon electronics, attributes that remain prohibitive for their widespread usage and the development of emerging technologies. Here, a photoconductive detector, fabricated using a solution-processed narrow bandgap conjugated polymer is demonstrated that enables charge carrier generation in the infrared and ultrasensitive SWIR-LWIR photodetection at room temperature. Devices demonstrate an ultralow electronic noise that enables outstanding performance from a simple, monolithic device enabling a high detectivity (D*, the figure of merit for detector sensitivity) >2.44 × 109 Jones (cm Hz1/2 W-1 ) using the ultralow flux of a blackbody that mirrors the background emission of objects. These attributes, ease of fabrication, low dark current characteristics, and highly sensitive operation overcome major limitations inherent within modern narrow-bandgap semiconductors, demonstrate practical utility, and suggest that uncooled detectivities superior to many inorganic devices can be achieved at high operating temperatures.

3.
Adv Sci (Weinh) ; 10(31): e2304688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672884

RESUMO

Organic retinomorphic sensors offer the advantage of in-sensor processing to filter out redundant static backgrounds and are well suited for motion detection. To improve this promising structure, here, the key role of interfacial energetics in promoting charge accumulation to raise the inherent photoresponse of the light-sensitive capacitor is studied. Specifically, incorporating appropriate interfacial layers around the photoactive layer is crucial to extend the carrier lifetime, as confirmed by intensity-modulated photovoltage spectroscopy. Compared to its photodiode counterpart, the retinomorphic sensor shows better detectivity and response speed due to the additional insulating layer, which reduces the dark current and the RC time constant. Lastly, three retinomorphic sensors are integrated into a line array to demonstrate the detection of movement speed and direction, showing the potential of retinomorphic designs for efficient motion tracking.

4.
Sci Adv ; 9(25): eadh0069, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352340

RESUMO

Structural supercapacitors hold promise to expand the energy capacity of a system by integrating load-bearing and energy-storage functions in a multifunctional structure, resulting in weight savings and safety improvements. Here, we develop strategies based on interfacial engineering to advance multifunctional efficiency. The structural electrodes were reinforced by coating carbon-fiber weaves with a uniquely stable conjugated redox polymer and reduced graphene oxide that raised pseudocapacitive capacitance and tensile strength. The solid polymer electrolyte was tuned to a gradient configuration, where it facilitated high ionic conductivity at the electrode-electrolyte interfaces and transitioned to a composition with high mechanical strength in the bulk for load support. The gradient design enabled the multilayer structural supercapacitors to reach state-of-the-art performance matching the level of monofunctional supercapacitors. In situ electrochemical-mechanical measurements established the device durability under mechanical loads. The structural supercapacitor was made into the hull of a model boat to demonstrate its multifunctionality.


Assuntos
Engenharia , Renda , Condutividade Elétrica , Eletrodos , Polímeros
5.
Adv Mater ; 34(45): e2206161, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114614

RESUMO

The development of open-shell organic molecules that magnetically order at room temperature,which can be practically applied, remains a grand challenge in chemistry, physics, and materials science. Despite the exploration of vast chemical space, design paradigms for organic paramagnetic centers generally result in unpaired electron spins that are unstable or isotropic. Here, a high-spin conjugated polymer is demonstrated, which is composed of alternating cyclopentadithiophene and benzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole heterocycles, in which macromolecular structure and topology coalesce to promote the spin center generation and intermolecular exchange coupling. Electron paramagnetic resonance (EPR) spectroscopy is consistent with spatially localized spins, while magnetic susceptibility measurements show clear anisotropic spin ordering and exchange interactions that persist at room temperature. The application of long-range π-correlations for spin center generation promotes remarkable stability. This work offers a fundamentally new approach to the implementation of this long-sought-after physical phenomenon within organic materials and the integration of manifold properties within emerging technologies.

6.
Mater Horiz ; 9(8): 2172-2179, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642962

RESUMO

Previous approaches to induce photomultiplication in organic diodes have increased the photosignal but lacked control over reducing background noise. This work presents a new interlayer design based on a heterojunction bilayer that concurrently enables photomultiplication and suppresses the dark current in organic shortwave infrared detectors to improve the overall detectivity. The heterojunction bilayer consists of a hole-transporting material copper thiocyanate and an electron-transporting material tin oxide, and this combination offers the ability to block charge injection in the dark. Under illumination, the bilayer promotes trap-assisted photomultiplication by lowering the tunneling barrier and amplifying the photocurrent through the injection of multiple carriers per absorbed photon. Upon incorporating the heterojunction interlayer in photodiodes and upconversion imagers, the devices achieve an external quantum efficiency up to 560% and a detectivity of 3.5 × 109 Jones. The upconversion efficiency of the imager doubles with a 1.7 fold improvement in contrast compared to the imager without the heterojunction interlayer. The new interlayer design is generalizable to work with different organic semiconductors, making it attractive and easy to integrate with emerging organic infrared systems.

7.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34108215

RESUMO

Photodetection spanning the short-, mid-, and long-wave infrared (SWIR-LWIR) underpins modern science and technology. Devices using state-of-the-art narrow bandgap semiconductors require complex manufacturing, high costs, and cooling requirements that remain prohibitive for many applications. We report high-performance infrared photodetection from a donor-acceptor conjugated polymer with broadband SWIR-LWIR operation. Electronic correlations within the π-conjugated backbone promote a high-spin ground state, narrow bandgap, long-wavelength absorption, and intrinsic electrical conductivity. These previously unobserved attributes enabled the fabrication of a thin-film photoconductive detector from solution, which demonstrates specific detectivities greater than 2.10 × 109 Jones. These room temperature detectivities closely approach those of cooled epitaxial devices. This work provides a fundamentally new platform for broadly applicable, low-cost, ambient temperature infrared optoelectronics.

8.
Angew Chem Int Ed Engl ; 59(49): 21971-21975, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954633

RESUMO

Homogeneous gold (Au) complexes have demonstrated tremendous utility in modern organic chemistry; however, their application for the synthesis of polymers remains rare. Herein, we demonstrate the first catalytic application of Au complexes toward the polycondensation of alkyne-containing comonomers and heteroarene nucleophiles. Polymerization occurs through successive intermolecular hydroarylation reactions to produce high molecular weight aromatic copolymers with 1,1-disubstituted alkene backbone linkages. Clear correlations between the rate and degree of polymerization (DP) were established based on catalyst structure and counterion pairing, thus enabling polymerization reactions that proceeded with remarkable efficiency, high reactivity, and exceptional DPs. The reactivity is broad in scope, enabling the copolymerization of highly functionalized aromatic and aliphatic monomers. These results highlight the untapped utility of Au catalysis in providing access to new macromolecular constructs.

9.
J Am Chem Soc ; 142(6): 2935-2947, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31927883

RESUMO

Single-site organolanthanum complexes supported on mesoporous silica nanoparticles, La{C(SiHMe2)3}n@MSNs, catalyze the ring-opening hydroboration reaction of aliphatic and styrenic epoxides with pinacolborane (HBpin). The surface-bound complexes, synthesized by reaction of the homoleptic tris(alkyl)lanthanum La{C(SiHMe2)3}3 and SBA-type MSN treated at 700 °C (MSN700), are mostly monopodal ≡SiO-La{C(SiHMe2)3}2 and contain an average of one bridging La↼H-Si per alkyl ligand. This structure was established through a combination of solid-state NMR (SSNMR) experiments, including J-resolved SiH coupling and quantitative 29Si measurements, diffuse reflectance IR, and elemental analysis. These rigorous analyses also established that grafting reactions in pentane provide a preponderance of ≡SiO-La{C(SiHMe2)3}2 sites and are superior to those in benzene and THF, and that grafting onto MSN treated at 550 °C (MSN550) results in a mixture of surface species. The single-site supported catalysts are more selective and in most cases more active than the homogeneous analogue, allow easy purification of products from the catalyst, are strongly resistant to leaching into solution phase, and may be recycled for reuse at least five times. After reaction of La{C(SiHMe2)3}n@MSN and HBpin, species including ≡SiO-La{C(SiHMe2)3}(H2Bpin) and ≡SiO-La{C(SiHMe2)3}{κ2-pinB-O(CMe2)2OBH3} are identified by detailed 1D and 2D 11B SSNMR experiments.

10.
ACS Appl Mater Interfaces ; 11(40): 36880-36885, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31524369

RESUMO

This report demonstrates high-performance infrared phototransistors that use a broad-band absorbing organic bulk heterojunction (BHJ) layer responsive from the visible to the shortwave infrared, from 500 to 1400 nm. The device structure is based on a bilayer transistor channel that decouples charge photogeneration and transport, enabling independent optimization of each process. The organic BHJ layer is improved by incorporating camphor, a highly polarizable additive that increases carrier lifetime. An indium zinc oxide transport layer with high electron mobility is employed for rapid charge transport. As a result, the phototransistors achieve a dynamic range of 127 dB and reach a specific detectivity of 5 × 1012 Jones under a low power illumination of 20 nW/cm2, outperforming commercial germanium photodiodes in the spectral range below 1300 nm. The photodetector metrics are measured with respect to the applied voltage, incident light power, and temporal bandwidth, demonstrating operation at a video-frame rate of 50 Hz. In particular, the frequency and light dependence of the phototransistor characteristics are analyzed to understand the change in photoconductive gain under different working conditions.

11.
Chem Sci ; 10(44): 10247-10255, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32110311

RESUMO

Natural and anthropogenic activities result in the production of polycyclic aromatic hydrocarbons (PAHs), persistent pollutants that negatively impact the environment and human health. Rapid and reliable methods for the detection and discrimination of these compounds remains a technological challenge owing to their relatively featureless properties, structural similarities, and existence as complex mixtures. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer (CP) array-based sensing, offers a straightforward approach for the quantitative and qualitative profiling of PAHs. The sensor array was constructed from six fluorescent fluorene-based copolymers, which incorporate side chains with peripheral 2-phenylbenzimidazole substituents that provide spectral overlap with PAHs and give rise to a pronounced IFE. Subtle structural differences in copolymer structure result in distinct spectral signatures, which provide a unique "chemical fingerprint" for each PAH. The discriminatory power of the array was evaluated using linear discriminant analysis (LDA) and principal component analysis (PCA) in order to discriminate between 16 PAH compounds identified as priority pollutants by the US Environmental Protection Agency (EPA). This array is the first multivariate system reliant on the modulation of the spectral signatures of CPs through the IFE for the detection and discrimination of closely related polynuclear aromatic species.

12.
J Am Chem Soc ; 137(1): 425-35, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25560913

RESUMO

The catalytic addition of alkenes and amines (hydroamination) typically provides α- or ß-amino stereocenters directly through C-N or C-H bond formation. Alternatively, desymmetrization reactions of symmetrical aminodialkenes or aminodialkynes provide access to stereogenic centers with the position controlled by the substrate's structure. In the present study of an enantioselective zirconium-catalyzed hydroamination, stereocenters resulting from C-N bond formation and desymmetrization of a prochiral quaternary center are independently controlled by the catalyst and reaction conditions. Using a single catalyst, the method provides selective access to either diastereomer of optically enriched five-, six-, and seven-membered cyclic amines from aminodialkenes and enantioselective synthesis of five-, six-, and seven-membered cyclic imines from aminodialkynes. Experiments on hydroamination of aminodialkenes testing the effects of the catalyst:substrate ratio, the absolute concentration of the catalyst, and the absolute initial concentration of the primary amine substrate show that the latter parameter strongly influences the stereoselectivity of the desymmetrization process, whereas the absolute configuration of the α-amino stereocenter generated by C-N bond formation is not affected by these parameters. Interestingly, isotopic substitution (H2NR vs D2NR) of the substrate enhances the stereoselectivity of the enantioselective and diastereoselective processes in aminodialkene cyclization and the peripheral stereocenter in aminodialkyne desymmetrization/cyclization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...