Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(22): 12230-12238, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414920

RESUMO

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.


Assuntos
Adaptação Fisiológica , Proteínas de Ligação a DNA/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Mutação com Perda de Função , Alelos , Altitude , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Seleção Genética , Tibet
2.
J Diabetes Res ; 2015: 436879, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106624

RESUMO

The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.


Assuntos
Angiopatias Diabéticas/etiologia , Células Progenitoras Endoteliais/metabolismo , Epigênese Genética , Hiperglicemia/fisiopatologia , Modelos Biológicos , Animais , Diferenciação Celular , Metilação de DNA , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Células Progenitoras Endoteliais/patologia , Produtos Finais de Glicação Avançada/sangue , Humanos , Hiperglicemia/sangue , MicroRNAs/metabolismo , Estresse Oxidativo , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...