Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Ophthalmol Retina ; 6(4): 298-307, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34628066

RESUMO

PURPOSE: To determine if treatment with a photobiomodulation (PBM) device results in greater improvement in central subfield thickness (CST) than placebo in eyes with center-involved diabetic macular edema (CI-DME) and good vision. DESIGN: Phase 2 randomized clinical trial. PARTICIPANTS: Participants had CI-DME and visual acuity (VA) 20/25 or better in the study eye and were recruited from 23 clinical sites in the United States. METHODS: One eye of each participant was randomly assigned 1:1 to a 670-nm light-emitting PBM eye patch or an identical device emitting broad-spectrum white light at low power. Treatment was applied for 90 seconds twice daily for 4 months. MAIN OUTCOME MEASURES: Change in CST on spectral-domain OCT at 4 months. RESULTS: From April 2019 to February 2020, 135 adults were randomly assigned to either PBM (n = 69) or placebo (n = 66); median age was 62 years, 37% were women, and 82% were White. The median device compliance was 92% with PBM and 95% with placebo. OCT CST increased from baseline to 4 months by a mean (SD) of 13 (53) µm in PBM eyes and 15 (57) µm in placebo eyes, with the mean difference (95% confidence interval [CI]) being -2 (-20 to 16) µm (P = 0.84). CI-DME, based on DRCR Retina Network sex- and machine-based thresholds, was present in 61 (90%) PBM eyes and 57 (86%) placebo eyes at 4 months (adjusted odds ratio [95% CI] = 1.30 (0.44-3.83); P = 0.63). VA decreased by a mean (SD) of -0.2 (5.5) letters and -0.6 (4.6) letters in the PBM and placebo groups, respectively (difference [95% CI] = 0.4 (-1.3 to 2.0) letters; P = 0.64). There were 8 adverse events possibly related to the PBM device and 2 adverse events possibly related to the placebo device. None were serious. CONCLUSIONS: PBM as given in this study, although safe and well-tolerated, was not found to be effective for the treatment of CI-DME in eyes with good vision.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Terapia com Luz de Baixa Intensidade , Edema Macular , Adulto , Inibidores da Angiogênese/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Diabetes Mellitus/tratamento farmacológico , Retinopatia Diabética/complicações , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/terapia , Feminino , Humanos , Edema Macular/tratamento farmacológico , Edema Macular/terapia , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Tomografia de Coerência Óptica/métodos , Acuidade Visual
2.
PLoS One ; 16(12): e0260968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860856

RESUMO

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


Assuntos
Metabolismo Energético , Células Ependimogliais/efeitos da radiação , Glucose/toxicidade , Raios Infravermelhos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Ratos , Edulcorantes/toxicidade
3.
Quant Imaging Med Surg ; 11(1): 107-118, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392015

RESUMO

BACKGROUND: Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to accelerate diabetic wound healing in preclinical and clinical studies. Mitochondrial dysfunction and oxidative stress play key roles in impaired diabetic wound healing, and the effect of PBM on the metabolic state of diabetic wounds remains to be elucidated. METHODS: In this study, a custom-designed in vivo fluorescence imaging technique was used to quantitatively assess the effect of FR-PBM on the mitochondrial bioenergetics of diabetic wounds. The intrinsic fluorescence of two mitochondrial co-enzymes, nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), was monitored to quantify the redox ratio (RR) (NADH/FAD) of wounds over time. RESULTS: Using an excisional model of wound healing, we demonstrated that 670 nm (FR) PBM improved mitochondrial bioenergetics and stimulated the rate of wound healing in diabetic db/db mice. Wound closure and the RR of diabetic wounds in response to 670 nm PBM (4.5 J/cm2, 60 mW/cm2 for 90 s per day, 5 days/week) were compared to the sham-treated group. At day 9 of post-wounding, we observed a 43% decrease in the wound area and a 75% increase in RR in FR-treated diabetic mice compared to sham-treated diabetic mice. CONCLUSIONS: We conclude that the increase in mitochondrial RR and the related decrease in oxidative stress may be an important factor in FR-PBM mediated acceleration of wound healing in diabetic mice.

4.
Sci Rep ; 10(1): 20382, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230161

RESUMO

Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease.


Assuntos
Metabolismo Energético/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Mitocôndrias/efeitos da radiação , Degeneração Retiniana/radioterapia , Retinose Pigmentar/radioterapia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Flavina-Adenina Dinucleotídeo/metabolismo , Raios Infravermelhos , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Ratos , Ratos Transgênicos , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Tomografia de Coerência Óptica , Resultado do Tratamento
5.
Biology (Basel) ; 8(2)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083549

RESUMO

Mitochondria are central in retinal cell function and survival and they perform functions that are critical to cell function. Retinal neurons have high energy requirements, since large amounts of ATP are needed to generate membrane potentials and power membrane pumps. Mitochondria over the course of aging undergo a number of changes. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation and increased numbers of mtDNA mutations. Mitochondria in the neural retina and the retinal pigment epithelium are particularly susceptible to oxidative damage with aging. Many age-related retinal diseases, including glaucoma and age-related macular degeneration, have been associated with mitochondrial dysfunction. Therefore, mitochondria are a promising therapeutic target for the treatment of retinal disease.

6.
IEEE J Transl Eng Health Med ; 7: 1800809, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32166047

RESUMO

Background: Diabetes is known to cause delayed wound healing, and chronic non-healing lower extremity ulcers may end with lower limb amputations and mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is critical to focus on underlying mechanisms of these debilitating wounds to find novel therapeutic strategies and thereby improve patient outcome. Methods: This study aims to design a label-free optical fluorescence imager that captures metabolic indices (NADH and FAD autofluorescence) and monitors the in vivo wound healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial redox state was utilized to assess the volumetric redox state of the wound tissue. Results: The results from our in vivo fluorescence imager and the 3D cryo-imager quantify the differences between the redox state of wounds on diabetic mice in comparison with the control mice. These metabolic changes are associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds. A significant correlation was observed between the redox state and the area of the wounds. Conclusion: The results suggest that our developed novel optical imaging system can successfully be used as an optical indicator of the complex wound healing process noninvasively.

7.
Invest Ophthalmol Vis Sci ; 59(11): 4362-4374, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193308

RESUMO

Purpose: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods: The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1ß, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results: GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1ß, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions: These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.


Assuntos
Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Glutationa Transferase/fisiologia , Células Fotorreceptoras/fisiologia , Degeneração Retiniana/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Sobrevivência Celular/fisiologia , Complemento C3/genética , Citocinas/genética , Eletrorretinografia , Feminino , Marcadores Genéticos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia
8.
MEDICC Rev ; 20(2): 27-31, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29773773

RESUMO

From 1991 to 1993, an epidemic of optic and peripheral neuropathy-the largest of the century-broke out in Cuba, affecting more than 50,000 people. Initially the main clinical features were decreased visual acuity, central and cecocentral scotomas, impaired color vision and absence of the papillomacular bundle. Later, peripheral and mixed optic-peripheral forms began to appear. Due to the magnitude of the epidemic, the Cuban government requested help from the international community at the 46th World Health Assembly in 1993. PAHO and WHO immediately responded by sending a mission of international experts. Several hypotheses regarding the pathogenesis of Cuban epidemic neuropathy were put forward including: toxic, nutritional, genetic and infectious. The authors refer to extensive studies by researchers sponsored by the Cuban government and PAHO/WHO, joined by scientists from several other countries, including the USA. This paper describes their multidisciplinary work, particularly devoted to investigating the hypothesis of a primary toxic-nutritional cause of the epidemic. Clinical aspects, such as case definition and clinical description, were vital issues from the start. Cuban physicians who first examined patients received a clear impression of its toxic-nutritional origin, later confirmed by international experts. Research then focused on the mechanisms contributing to damage under the toxic-nutritional hypothesis. These included injuries to the mitochondrial oxidative phosphorylation pathway, nutritional deficiencies, excitotoxicity, formate toxicity and dysfunction of the blood-brain barrier. It was expected that the results of such international collaboration into this major health problem would also shed more light on mechanisms underlying other nutritional or tropical myeloneuropathies. KEYWORDS Optic neuritis, optic neuropathy, peripheral neuropathy, neurotoxicity syndromes, disease outbreaks, international cooperation, Cuba Erratum: Page 30, first complete paragraph, line 7, "Two models were developed independently by Cuban researchers" should read "Two models were developed independently by AAS and AGQ."


Assuntos
Processos Grupais , Doenças do Nervo Óptico/epidemiologia , Doenças do Nervo Óptico/etiologia , Doenças do Sistema Nervoso Periférico/epidemiologia , Doenças do Sistema Nervoso Periférico/etiologia , Cuba/epidemiologia , Surtos de Doenças , Epidemias , Abastecimento de Alimentos , Humanos , Cooperação Internacional
9.
PLoS One ; 12(10): e0186375, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036196

RESUMO

Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA.


Assuntos
Antibacterianos/farmacologia , Desinfetantes/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Álcoois/farmacologia
10.
J Photochem Photobiol B ; 167: 150-157, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064075

RESUMO

Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm-1), lipids (1743, 1409cm-1), and nucleic acids region of the spectrum (1060, 1087cm-1) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO2- band (from 1228 to 1238cm-1), DNA backbone (from 970 to 966cm-1) and base pairing vibration of DNA (from 1717 to 1712cm-1) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections.


Assuntos
Luz , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Microscopia/métodos , Antibacterianos/farmacologia , Contagem de Colônia Microbiana , DNA Bacteriano/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Vancomicina/farmacologia
11.
Exp Eye Res ; 150: 122-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26521765

RESUMO

PURPOSE: To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. METHODS: Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. RESULTS: During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. CONCLUSION: We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.


Assuntos
Angiofluoresceinografia/métodos , Hipocalcina/metabolismo , Imuno-Histoquímica/métodos , Degeneração Retiniana , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Animais , Modelos Animais de Doenças , Fundo de Olho , Humanos , Ratos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
12.
Adv Exp Med Biol ; 854: 437-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427443

RESUMO

Evidence is growing that exposure of tissue to low energy photon irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, collectively termed "photobiomodulation" (PBM) can restore the function of damaged mitochondria, upregulate the production of cytoprotective factors and prevent apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue injuries and acceleration of wound healing for more than 40 years. Recent studies have demonstrated that FR/NIR photons penetrate diseased tissues including the retina. The therapeutic effects of PBM have been hypothesized to result from intracellular signaling pathways triggered when FR/NIR photons are absorbed by the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in improved mitochondrial energy metabolism, increased cytoprotective factor production and cell survival. Investigations in rodent models of methanol-induced ocular toxicity, light damage, retinitis pigmentosa and age-related macular degeneration have demonstrated the PBM attenuates photoreceptor cell death, protects retinal function and exerts anti-inflammatory actions.


Assuntos
Raios Infravermelhos , Fototerapia/métodos , Retina/efeitos da radiação , Doenças Retinianas/terapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/efeitos da radiação , Humanos , Metanol/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fótons , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Ratos , Retina/efeitos dos fármacos , Retina/patologia , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/fisiopatologia
13.
PLoS One ; 8(6): e67358, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840675

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly studied animal model of multiple sclerosis (MS), a chronic autoimmune demyelinating disorder of the central nervous system. Immunomodulatory and immunosuppressive therapies currently approved for the treatment of MS slow disease progression, but do not prevent it. A growing body of evidence suggests additional mechanisms contribute to disease progression. We previously demonstrated the amelioration of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6 mice by 670 nm light-induced photobiomodulation, mediated in part by immune modulation. Numerous other studies demonstrate that near-infrared/far red light is therapeutically active through modulation of nitrosoxidative stress. As nitric oxide has been reported to play diverse roles in EAE/MS, and recent studies suggest that axonal loss and progression of disability in MS is mediated by nitrosoxidative stress, we investigated the effect of 670 nm light treatment on nitrosative stress in MOG-induced EAE. METHODOLOGY: Cell culture experiments demonstrated that 670 nm light-mediated photobiomodulation attenuated antigen-specific nitric oxide production by heterogenous lymphocyte populations isolated from MOG immunized mice. Experiments in the EAE model demonstrated down-regulation of inducible nitric oxide synthase (iNOS) gene expression in the spinal cords of mice with EAE over the course of disease, compared to sham treated animals. Animals receiving 670 nm light treatment also exhibited up-regulation of the Bcl-2 anti-apoptosis gene, an increased Bcl-2:Bax ratio, and reduced apoptosis within the spinal cord of animals over the course of disease. 670 nm light therapy failed to ameliorate MOG-induced EAE in mice deficient in iNOS, confirming a role for remediation of nitrosative stress in the amelioration of MOG-induced EAE by 670 nm mediated photobiomodulation. CONCLUSIONS: These data indicate that 670 nm light therapy protects against nitrosative stress and apoptosis within the central nervous system, contributing to the clinical effect of 670 nm light therapy previously noted in the EAE model.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Raios Infravermelhos/uso terapêutico , Estresse Fisiológico/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/imunologia , Fototerapia , Medula Espinal/enzimologia , Medula Espinal/patologia , Medula Espinal/efeitos da radiação
14.
Invest Ophthalmol Vis Sci ; 54(5): 3681-90, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23557732

RESUMO

PURPOSE: Treatment with light in the far-red to near-infrared region of the spectrum (photobiomodulation [PBM]) has beneficial effects in tissue injury. We investigated the therapeutic efficacy of 670-nm PBM in rodent and cultured cell models of diabetic retinopathy. METHODS: Studies were conducted in streptozotocin-induced diabetic rats and in cultured retinal cells. Diabetes-induced retinal abnormalities were assessed functionally, biochemically, and histologically in vivo and in vitro. RESULTS: We observed beneficial effects of PBM on the neural and vascular elements of retina. Daily 670-nm PBM treatment (6 J/cm(2)) resulted in significant inhibition in the diabetes-induced death of retinal ganglion cells, as well as a 50% improvement of the ERG amplitude (photopic b wave responses) (both P < 0.01). To explore the mechanism for these beneficial effects, we examined physiologic and molecular changes related to cell survival, oxidative stress, and inflammation. PBM did not alter cytochrome oxidase activity in the retina or in cultured retinal cells. PBM inhibited diabetes-induced superoxide production and preserved MnSOD expression in vivo. Diabetes significantly increased both leukostasis and expression of ICAM-1, and PBM essentially prevented both of these abnormalities. In cultured retinal cells, 30-mM glucose exposure increased superoxide production, inflammatory biomarker expression, and cell death. PBM inhibited all of these abnormalities. CONCLUSIONS: PBM ameliorated lesions of diabetic retinopathy in vivo and reduced oxidative stress and cell death in vitro. PBM has been documented to have minimal risk. PBM is noninvasive, inexpensive, and easy to administer. We conclude that PBM is a simple adjunct therapy to attenuate the development of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Retinopatia Diabética/radioterapia , Fototerapia/métodos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Leucostasia/patologia , Leucostasia/radioterapia , Luz , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Fototerapia/instrumentação , Ratos , Ratos Endogâmicos Lew , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Superóxidos/metabolismo
15.
BMC Microbiol ; 12: 176, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22894815

RESUMO

BACKGROUND: Chlamydia trachomatis is an intracellular bacterium that resides in the conjunctival and reproductive tract mucosae and is responsible for an array of acute and chronic diseases. A percentage of these infections persist even after use of antibiotics, suggesting the need for alternative treatments. Previous studies have demonstrated anti-bacterial effects using different wavelengths of visible light at varying energy densities, though only against extracellular bacteria. We investigated the effects of visible light (405 and 670 nm) irradiation via light emitting diode (LEDs) on chlamydial growth in endocervical epithelial cells, HeLa, during active and penicillin-induced persistent infections. Furthermore, we analyzed the effect of this photo treatment on the ensuing secretion of IL-6 and CCL2, two pro-inflammatory cytokines that have previously been identified as immunopathologic components associated with trichiasis in vivo. RESULTS: C. trachomatis-infected HeLa cells were treated with 405 or 670 nm irradiation at varying energy densities (0 - 20 J/cm2). Bacterial growth was assessed by quantitative real-time PCR analyzing the 16S: GAPDH ratio, while cell-free supernatants were examined for IL-6 and monocyte chemoattractant protein-1 (CCL2) production. Our results demonstrated a significant dose-dependent inhibitory effect on chlamydial growth during both active and persistent infections following 405 nm irradiation. Diminished bacterial load corresponded to lower IL-6 concentrations, but was not related to CCL2 levels. In vitro modeling of a persistent C. trachomatis infection induced by penicillin demonstrated significantly elevated IL-6 levels compared to C. trachomatis infection alone, though 405 nm irradiation had a minimal effect on this production. CONCLUSION: Together these results identify novel inhibitory effects of 405 nm violet light on the bacterial growth of intracellular bacterium C. trachomatis in vitro, which also coincides with diminished levels of the pro-inflammatory cytokine IL-6.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/efeitos da radiação , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Luz , Quimiocina CCL2/metabolismo , Células HeLa , Humanos , Interleucina-6/metabolismo
16.
PLoS One ; 7(1): e30655, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292010

RESUMO

BACKGROUND: The approved immunomodulatory agents for the treatment of multiple sclerosis (MS) are only partially effective. It is thought that the combination of immunomodulatory and neuroprotective strategies is necessary to prevent or reverse disease progression. Irradiation with far red/near infrared light, termed photobiomodulation, is a therapeutic approach for inflammatory and neurodegenerative diseases. Data suggests that near-infrared light functions through neuroprotective and anti-inflammatory mechanisms. We sought to investigate the clinical effect of photobiomodulation in the Experimental Autoimmune Encephalomyelitis (EAE) model of multiple sclerosis. METHODOLOGY/PRINCIPAL FINDINGS: The clinical effect of photobiomodulation induced by 670 nm light was investigated in the C57BL/6 mouse model of EAE. Disease was induced with myelin oligodendrocyte glycoprotein (MOG) according to standard laboratory protocol. Mice received 670 nm light or no light treatment (sham) administered as suppression and treatment protocols. 670 nm light reduced disease severity with both protocols compared to sham treated mice. Disease amelioration was associated with down-regulation of proinflammatory cytokines (interferon-γ, tumor necrosis factor-α) and up-regulation of anti-inflammatory cytokines (IL-4, IL-10) in vitro and in vivo. CONCLUSION/SIGNIFICANCE: These studies document the therapeutic potential of photobiomodulation with 670 nm light in the EAE model, in part through modulation of the immune response.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Luz , Fototerapia/métodos , Animais , Citocinas/sangue , Progressão da Doença , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/patologia , Feminino , Mediadores da Inflamação/sangue , Raios Infravermelhos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Fotobiologia , Fatores de Tempo
17.
Front Biosci (Elite Ed) ; 4(3): 818-23, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201916

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that affects large numbers of people, particularly those of a more advanced age. Mitochondrial dysfunction plays a central role in PD, especially in the electron transport chain. This mitochondrial role allows the use of inhibitors of complex I and IV in PD models, and enhancers of complex IV activity, such as NIR light, to be used as possible therapy. PD models fall into two main categories; cell cultures and animal models. In cell cultures, primary neurons, mutant neuroblastoma cells, and cell cybrids have been studied in conjunction with NIR light. Primary neurons show protection or recovery of function and morphology by NIR light after toxic insult. Neuroblastoma cells, with a gene for mutant alpha-synuclein, show similar results. Cell cybrids, containing mtDNA from PD patients, show restoration of mitochondrial transport and complex I and IV assembly. Animal models include toxin-insulted mice, and alpha-synuclein transgenic mice. Functional recovery of the animals, chemical and histological evidence, and delayed disease progression show the potential of NIR light in treating Parkinson's disease.


Assuntos
Raios Infravermelhos , Doença de Parkinson/terapia , Fototerapia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
18.
J Photochem Photobiol B ; 99(2): 105-10, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20356759

RESUMO

Hyperglycemia causes oxidative damage in tissues prone to complications in diabetes. Low-level light therapy (LLLT) in the red to near infrared range (630-1000nm) has been shown to accelerate diabetic wound healing. To test the hypothesis that LLLT would attenuate oxidative renal damage in Type I diabetic rats, male Wistar rats were made diabetic with streptozotocin (50mg/kg, ip), and then exposed to 670nm light at a dose of 9J/cm(2) once per day for 14weeks. The activity and expression of catalase and the activity of Na K-ATPase increased in kidneys of light-treated diabetic rats, whereas the activity and expression of glutathione peroxidase and the expression of Na K-ATPase were unchanged. LLLT lowered the values of serum BUN, serum creatinine, and BUN/creatinine ratio. In addition, LLLT augmented the activity and expression of cytochrome c oxidase, a primary photoacceptor molecule in the mitochondrial respiratory chain, and reduced the formation of the DNA adduct 8-hydroxy-2'-deoxyguanosine in kidney. LLLT improved renal function and antioxidant defense capabilities in the kidney of Type I diabetic rats. Thus, 670nm LLLT may be broadly applicable to the amelioration of renal complications induced by diabetes that disrupt antioxidant defense mechanisms.


Assuntos
Diabetes Mellitus Experimental/terapia , Rim/enzimologia , Fototerapia , Animais , Nitrogênio da Ureia Sanguínea , Catalase/metabolismo , Creatina/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Glutationa Peroxidase/metabolismo , Raios Infravermelhos , Rim/efeitos dos fármacos , Rim/efeitos da radiação , Masculino , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
J Biochem Mol Toxicol ; 23(1): 1-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19202557

RESUMO

Diabetes causes oxidative stress in the liver and other tissues prone to complications. Photobiomodulation by near infrared light (670 nm) has been shown to accelerate diabetic wound healing, improve recovery from oxidative injury in the kidney, and attenuate degeneration in retina and optic nerve. The present study tested the hypothesis that 670 nm photobiomodulation, a low-level light therapy, would attenuate oxidative stress and enhance the antioxidant protection system in the liver of a model of type I diabetes. Male Wistar rats were made diabetic with streptozotocin (50 mg/kg, ip) then exposed to 670 nm light (9 J/cm(2)) once per day for 18 days (acute) or 14 weeks (chronic). Livers were harvested, flash frozen, and then assayed for markers of oxidative stress. Light treatment was ineffective as an antioxidant therapy in chronic diabetes, but light treatment for 18 days in acutely diabetic rats resulted in the normalization of hepatic glutathione reductase and superoxide dismutase activities and a significant increase in glutathione peroxidase and glutathione-S transferase activities. The results of this study suggest that 670 nm photobiomodulation may reduce, at least in part, acute hepatic oxidative stress by enhancing the antioxidant defense system in the diabetic rat model.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/terapia , Fígado/metabolismo , Fototerapia , Doença Aguda , Animais , Glicemia/metabolismo , Peso Corporal/efeitos da radiação , Doença Crônica , Diabetes Mellitus Experimental/enzimologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Fígado/enzimologia , Fígado/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
20.
Brain Res ; 1243: 167-73, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-18848925

RESUMO

Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to nigrostriatal degeneration. The inhibition of mitochondrial respiratory chain complex I and oxidative stress-induced damage have been implicated in the pathogenesis of PD. The present study used these specific mitochondrial complex I inhibitors (rotenone and 1-methyl-4-phenylpyridinium or MPP(+)) on striatal and cortical neurons in culture. The goal was to test our hypothesis that pretreatment with near-infrared light (NIR) via light-emitting diode (LED) had a greater beneficial effect on primary neurons grown in media with rotenone or MPP(+) than those with or without LED treatment during exposure to poisons. Striatal and visual cortical neurons from newborn rats were cultured in a media with or without 200 nM of rotenone or 250 microM of MPP(+) for 48 h. They were treated with NIR-LED twice a day before, during, and both before and during the exposure to the poison. Results indicate that pretreatment with NIR-LED significantly suppressed rotenone- or MPP(+)-induced apoptosis in both striatal and cortical neurons (P<0.001), and that pretreatment plus LED treatment during neurotoxin exposure was significantly better than LED treatment alone during exposure to neurotoxins. In addition, MPP(+) induced a decrease in neuronal ATP levels (to 48% of control level) that was reversed significantly to 70% of control by NIR-LED pretreatment. These data suggest that LED pretreatment is an effective adjunct preventative therapy in rescuing neurons from neurotoxins linked to PD.


Assuntos
Citoproteção/efeitos da radiação , Luz , Neurônios/efeitos da radiação , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Fototerapia/métodos , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Células Cultivadas , Citoproteção/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/fisiologia , Metabolismo Energético/efeitos da radiação , Substâncias Perigosas/efeitos adversos , Herbicidas/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Doença de Parkinson/fisiopatologia , Ratos , Ratos Sprague-Dawley , Rotenona/toxicidade , Telencéfalo/citologia , Telencéfalo/metabolismo , Resultado do Tratamento , Desacopladores/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...