Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 274(48): 33898-904, 1999 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-10567351

RESUMO

A homohexameric molecule of Escherichia coli pyrophosphatase is arranged as a dimer of trimers, with an active site present in each of its six monomers. Earlier we reported that substitution of His(136) and His(140) in the intertrimeric subunit interface splits the molecule into active trimers (Velichko, I. S., Mikalahti, K., Kasho, V. N., Dudarenkov, V. Y., Hyytiä, T., Goldman, A., Cooperman, B. S., Lahti, R., and Baykov, A. A. (1998) Biochemistry 37, 734-740). Here we demonstrate that additional substitutions of Tyr(77) and Gln(80) in the intratrimeric interface give rise to moderately active dimers or virtually inactive monomers, depending on pH, temperature, and Mg(2+) concentration. Successive dissociation of the hexamer into trimers, dimers, and monomers progressively decreases the catalytic efficiency (by 10(6)-fold in total), and conversion of a trimer into dimer decreases the affinity of one of the essential Mg(2+)-binding sites/monomer. Disruptive substitutions predominantly in the intratrimeric interface stabilize the intertrimeric interface and vice versa, suggesting that the optimal intratrimeric interaction is not compatible with the optimal intertrimeric interaction. Because of the resulting "conformational strain," hexameric wild-type structure appears to be preformed to bind substrate. A hexameric triple variant substituted at Tyr(77), Gln(80), and His(136) exhibits positive cooperativity in catalysis, consistent with this model.


Assuntos
Escherichia coli/enzimologia , Pirofosfatases/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/genética , Catálise , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Ácido Glutâmico/genética , Glutamina/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Compostos de Magnésio/farmacologia , Estrutura Quaternária de Proteína/efeitos dos fármacos , Pirofosfatases/química , Pirofosfatases/genética , Especificidade por Substrato , Temperatura , Tirosina/genética
4.
Eur J Biochem ; 260(2): 308-17, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10095764

RESUMO

Catalysis by Escherichia coli inorganic pyrophosphatase (E-PPase) was found to be strongly modulated by Tris and similar aminoalcoholic buffers used in previous studies of this enzyme. By measuring ligand-binding and catalytic properties of E-PPase in zwitterionic buffers, we found that the previous data markedly underestimate Mg(2+)-binding affinity for two of the three sites present in E-PPase (3.5- to 16-fold) and the rate constant for substrate (dimagnesium pyrophosphate) binding to monomagnesium enzyme (20- to 40-fold). By contrast, Mg(2+)-binding and substrate conversion in the enzyme-substrate complex are unaffected by buffer. These data indicate that E-PPase requires in total only three Mg2+ ions per active site for best performance, rather than four, as previously believed. As measured by equilibrium dialysis, Mg2+ binds to 2.5 sites per monomer, supporting the notion that one of the tightly binding sites is located at the trimer-trimer interface. Mg2+ binding to the subunit interface site results in increased hexamer stability with only minor consequences for catalytic activity measured in the zwitterionic buffers, whereas Mg2+ binding to this site accelerates substrate binding up to 16-fold in the presence of Tris. Structural considerations favor the notion that the aminoalcohols bind to the E-PPase active site.


Assuntos
Pirofosfatases/metabolismo , Sítios de Ligação , Catálise , Escherichia coli , Concentração de Íons de Hidrogênio , Cinética , Magnésio/metabolismo , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Trometamina
5.
J Biol Chem ; 274(6): 3294-9, 1999 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-9920869

RESUMO

Recent crystallographic studies on Escherichia coli inorganic pyrophosphatase (E-PPase) have identified three Mg2+ ions/enzyme hexamer in water-filled cavities formed by Asn24, Ala25, and Asp26 at the trimer-trimer interface (Kankare, J., Salminen, T., Lahti, R., Cooperman, B., Baykov, A. A., and Goldman, A. (1996) Biochemistry 35, 4670-4677). Here we show that D26S and D26N substitutions decrease the stoichiometry of tight Mg2+ binding to E-PPase by approximately 0.5 mol/mol monomer and increase hexamer stability in acidic medium. Mg2+ markedly decelerates the dissociation of enzyme hexamer into trimers at pH 5.0 and accelerates hexamer formation from trimers at pH 7.2 with wild type E-PPase and the N24D variant, in contrast to the D26S and D26N variants, when little or no effect is seen. The catalytic parameters describing the dependences of enzyme activity on substrate and Mg2+ concentrations are of the same magnitude for wild type E-PPase and the three variants. The affinity of the intertrimer site for Mg2+ at pH 7.2 is intermediate between those of two Mg2+ binding sites found in the E-PPase active site. It is concluded that the metal ion binding site found at the trimer-trimer interface of E-PPase is a high affinity site whose occupancy by Mg2+ greatly stabilizes the enzyme hexamer but has little effect on catalysis.


Assuntos
Escherichia coli/enzimologia , Magnésio/metabolismo , Pirofosfatases/metabolismo , Sítios de Ligação , Catálise , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...