Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vavilovskii Zhurnal Genet Selektsii ; 26(6): 507-514, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36313822

RESUMO

Solanum tuberosum L. is the most important non-grain starch crop with a potential yield of 38-48 t/ha and a starch content of 13.2-18.7 %. Potato tubers are stored at a low temperature (2-4 °C) in a state of physiological dormancy. A disadvantage of this type of storage is the degradation of starch and the accumulation of reducing sugars (cold-induced sweetening), including due to an increase in the activity of ß-amylases that hydrolyze starch to maltose. In this study, a comparative analysis of the ß-amylase (StBAM1, StBAM9) and amylase inhibitor (StAI ) gene expression, as well as starch and reducing sugar content in tubers during long-term low-temperature storage (September, February, April) was performed using potato cultivars Nadezhda, Barin, Krasavchik, Severnoe siyanie and Utro. The ß-amylase genes, StBAM9 and one of the two StBAM1 homologs (with the highest degree of homology with AtBAM1), were selected based on phylogenetic analysis data. Evaluation of the expression of these genes and the amylase inhibitor gene showed a tendency to decrease in transcription for all analyzed cultivars. The starch content also significantly decreased during tuber storage. The amount of reducing sugars increased in the September-April period, while in February-April, their content did not change (Krasavchik), decreased (Barin, Severnoe siyanie) or continued to grow (Utro, Nadezhda). It can be assumed that the gene activity of StBAM1 and StBAM9 correlates with the amount of starch (positively) and monosaccharides (negatively). The level of StAI expression, in turn, may be directly dependent on the level of StBAM1 expression. At the same time, there is no relationship between the degree of cultivar predisposition to cold-induced sweetening and the expression profile of the StBAM1, StBAM9, and StAI genes.

2.
Dokl Biochem Biophys ; 507(1): 340-344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786998

RESUMO

The expression of the genes of carotenoid-cis-trans-isomerases CrtISO, CrtISO-L1, and CrtISO-L2 was studied in comparison with the content of carotenoids in tomato species with different ripe fruit colors: green (Solanum habrochaites), yellow (S. cheesmaniae), and red (S. pimpinellifolium and S. lycopersicum). More ancient origin of CrtISO-L2 in relation to CrtISO and CrtISO-L1 was shown. A similar content of total carotenoids (leaves) and ß-carotene (ripe fruits) between the samples was found. Unlike the fruits of S. habrochaites and S. cheesmaniae, the red fruits accumulated lycopene and 20-30 times greater total carotenoids. The highest level of transcripts both in leaves and in ripe fruits was detected for CrtISO. The CrtISO-L1 and CrtISO-L2 genes were transcribed at high levels in leaves and at low levels in fruits, except for the high expression of CrtISO-L2 in S. lycopersicum fruits. No correlation between the content of carotenoids and the level of gene expression in the fruit was observed. In the leaves, a positive correlation between the amount of carotenoids and the levels of CrtISO-L1 and CrtISO-L2 transcripts was found.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Carotenoides/metabolismo , Licopeno/metabolismo , Frutas/genética , Frutas/metabolismo
3.
Dokl Biochem Biophys ; 495(1): 282-288, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33368035

RESUMO

Genes homologous to PSY1 and PSY2 that encode phytoene synthase isoforms in Capsicum species C. baccatum, C. chinense, C. frutescens, C. tovarii, C. eximium, and C. chacoense were identified. High conservatism of functionally significant sites of phytoene synthases of the analyzed accessions was revealed. It was found that only PSY1-based clustering of pepper species corresponds to the traditional Capsicum phylogeny; C. eximium was a part of the Purple corolla complex, and C. chacoense was equidistant from Annuum and Baccatum clades. The absence of significant differences between PSY1 and PSY2 of yellow-fruited C. chinense and red-fruited pepper accessions was shown. The yellow color of C. chinense fruit may be the result of both decreased PSY1 expression and increased PSY2 transcription. Thus, it was demonstrated that the acquired fruit pigmentation retains strict phylogenetic limitations, which, however, can be overcome using artificial selection for the activity of phytoene synthase PSY1.


Assuntos
Capsicum/enzimologia , Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Capsicum/classificação , Capsicum/genética , Capsicum/metabolismo , Clonagem Molecular , Frutas/genética , Frutas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Isoenzimas , Filogenia , Pigmentação , Proteínas de Plantas/genética , Homologia de Sequência
4.
Vavilovskii Zhurnal Genet Selektsii ; 24(7): 687-696, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33738386

RESUMO

The fruits of various pepper cultivars are characterized by a different color, which is determined by the pigment ratio; carotenoids dominate in ripe fruits, while chlorophylls, in immature fruits. A key regulator of carotenoid biosynthesis is the phytoene synthase encoded by the PSY gene. The Capsicum annuum genome contains two isoforms of this enzyme, localized in leaf (PSY2) and fruit (PSY1) plastids. In this work, the complete PSY1 and PSY2 genes were identified in nine C. annuum cultivars, which differ in ripe fruit color. PSY1 and PSY2 sequence variability was 2.43 % (69 SNPs) and 1.21 % (36 SNPs). The most variable were PSY1 proteins of the cultivars 'Maria' (red-fruited) and 'Sladkij shokolad' (red-brown-fruited). All identified PSY1 and PSY2 homologs contained the phytoene synthase domain HH-IPPS and the transit peptide. In the PSY1 and PSY2 HH-IPPS domains, functionally significant sites were determined. For all accessions studied, the active sites (YAKTF and RAYV), aspartate-rich substrate-Mg2+-binding sites (DELVD and DVGED), and other functional residues were shown to be conserved. Transit peptides were more variable, and their similarity in the PSY1 and PSY2 proteins did not exceed 78.68 %. According to the biochemical data obtained, the largest amounts of chlorophylls and carotenoids across the cultivars studied were detected in immature and ripe fruits of the cv. 'Sladkij shokolad' and 'Shokoladnyj'. Also, ripe fruits of the cv. 'Nesozrevayuschij' (green-fruited) were marked by significant chlorophyll content, but a minimum of carotenoids. The PSY1 and PSY2 expression patterns were determined in the fruit pericarp at three ripening stages in 'Zheltyj buket', 'Sladkij shokolad', 'Karmin' and 'Nesozrevayuschij', which have different ripe fruit colors: yellow, red-brown, dark red and green, respectively. In the leaves of the cultivars studied, PSY1 expression levels varied significantly. All cultivars were characterized by increased PSY1 transcription as the fruit ripened; the maximum transcription level was found in the ripe fruit of 'Sladkij shokolad', and the lowest, in 'Nesozrevayuschij'. PSY2 transcripts were detected not only in the leaves and immature fruits, but also in ripe fruits. Assessment of a possible correlation of PSY1 and PSY2 transcription with carotenoid and chlorophyll content revealed a direct relationship between PSY1 expression level and carotenoid pigmentation during fruit ripening. It has been suggested that the absence of a typical pericarp pigmentation pattern in 'Nesozrevayuschij' may be associated with impaired chromoplast formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...