Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 23(5): 1958-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21628525

RESUMO

Although the multilayered structure of the plant cuticle was discovered many years ago, the molecular basis of its formation and the functional relevance of the layers are not understood. Here, we present the permeable cuticle1 (pec1) mutant of Arabidopsis thaliana, which displays features associated with a highly permeable cuticle in several organs. In pec1 flowers, typical cutin monomers, such as ω-hydroxylated fatty acids and 10,16-dihydroxypalmitate, are reduced to 40% of wild-type levels and are accompanied by the appearance of lipidic inclusions within the epidermal cell. The cuticular layer of the cell wall, rather than the cuticle proper, is structurally altered in pec1 petals. Therefore, a significant role for the formation of the diffusion barrier in petals can be attributed to this layer. Thus, pec1 defines a new class of mutants. The phenotypes of the pec1 mutant are caused by the knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC transporter from the PLEIOTROPIC DRUG RESISTANCE family that is localized at the plasma membrane of epidermal cells in a polar manner toward the surface of the organs. Our results suggest that ABCG32 is involved in the formation of the cuticular layer of the cell wall, most likely by exporting particular cutin precursors from the epidermal cell.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipídeos de Membrana/metabolismo , Epiderme Vegetal/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Membrana Celular , Parede Celular/metabolismo , Flores/genética , Flores/metabolismo , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genótipo , Permeabilidade , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Deleção de Sequência
2.
Planta ; 231(3): 767-77, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20033229

RESUMO

Floral and vegetative development of plants is dependent on the combinatorial action of MADS-domain transcription factors. Members of the STMADS11 subclade, such as MPF1 of Physalis, are abundantly expressed in leaves as well as in floral organs, but their function is not yet clear. Our studies with transgenic Arabidopsis that over-express MPF1 suggest that MPF1 interacts with SOC1 to determine flowering time. However, MPF1 RNAi-mediated knockdown Physalis plants revealed a complex phenotype with changes in flowering time, plant architecture and seed size. Flowering of these plants was delayed by about 20% as compared to wild type. Expression of PFLFY is upregulated in the MPF1 RNAi lines, while PFFT and MPF3 genes are strongly repressed. MPF1 interacts with a subset of MADS-domain factors, namely with PFSOC1 in planta, and with PFSEP3 and PFFUL in yeast, supporting a regulatory role for this protein in flowering. The average size of seeds produced by the transgenic MPF1 RNAi plants is increased almost twofold. The height of these plants is also increased about twofold, but most axillary buds are stunted when compared to controls. Taken together, this suggests that members of the STMADS11 subclade act as positive regulators of flowering but have diverse functions in plant growth.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/fisiologia , Physalis/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Physalis/genética , Physalis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo
3.
PLoS Genet ; 5(10): e1000703, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19876373

RESUMO

Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Mutação , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Proteínas de Ligação ao Cálcio/metabolismo , Estudo de Associação Genômica Ampla , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Ligação a RNA , Proteínas Serrate-Jagged
4.
Planta ; 230(4): 857-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19554348

RESUMO

Spatial regulation of C-function genes controlling reproductive organ identity in the centre of the flower can be achieved by adjusting the level of their expression within the genuine central expression domain in Antirrhinum and Petunia. Loss of this control in mutants is revealed by enhanced C-gene expression in the centre and by lateral expansion of the C-domain. In order to test whether the level of central C-gene expression and hence the principle of 'regulation by tuning' also applies to spatial regulation of the C-function gene AGAMOUS (AG) in Arabidopsis, we generated transgenic plants with enhanced central AG expression by using stem cell-specific CLAVATA3 (CLV3) regulatory sequences to drive transcription of the AG cDNA. The youngest terminal flowers on inflorescences of CLV3::AG plants displayed homeotic features in their outer whorls indicating ectopic AG expression. Dependence of the homeotic feature on the age of the plant is attributed to the known overall weakening of repressive mechanisms controlling AG. Monitoring AG with an AG-I::GUS reporter construct suggests ectopic AG expression in CLV3::AG flowers when AG in the inflorescence is still repressed, although in terminating inflorescence meristems, AG expression expands to all tissues. Supported by genetic tests, we conclude that upon enhanced central AG expression, the C-domain laterally expands necessitating tuning of the expression level of C-function genes in the wild type. The tuning mechanism in C-gene regulation in Arabidopsis is discussed as a late security switch that ensures wild-type C-domain control when other repressive mechanism starts to fade and fail.


Assuntos
Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/ultraestrutura , Expressão Gênica , Meristema/genética , Meristema/ultraestrutura , Fenótipo , Plantas Geneticamente Modificadas , Transgenes
5.
Plant Cell ; 21(4): 1252-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19376931

RESUMO

Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific beta-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool.


Assuntos
Acetiltransferases/fisiologia , Apoptose/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Polissacarídeo-Liases/fisiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Apoptose/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Fragmentação do DNA , Reparo do DNA/genética , Elongases de Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Espectrometria de Massas , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
6.
Plant J ; 57(1): 80-95, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18786002

RESUMO

Suberin is a hydrophobic polyester found in the cell walls of various plant-environment interfaces, including shoot and root peridermal tissue, and the root hypodermis and endodermis. Suberin deposits form apoplastic barriers that control water and nutrient transport, protect against pathogens and seal wounded tissue. Despite this physiological importance, and the detailed information on the suberin composition of many plants, there is a great gap in our knowledge of the molecular mechanism of suberin biosynthesis, caused in part by a lack of mutants in suberin formation. Here, we report the characterization of daisy, an Arabidopsis mutant that is defective in a fatty acid elongase condensing enzyme. The daisy mutant roots exhibit disturbed growth, and the suberin level is reduced in C(22) and C(24) very long chain fatty acid derivatives, whereas C(16), C(18) and C(20) derivatives accumulate, compared with wild-type suberin, indicating that DAISY functions as a docosanoic acid synthase. Consistent with a significantly increased level of suberin in the roots of NaCl-stressed plants, DAISY is transcriptionally activated by NaCl application, and also by polyethylene glycol-induced drought stress and wounding. Expression analysis using RT-PCR and promoter-GUS fusions demonstrated a distinct DAISY expression pattern in the root stele, senescing sepals, siliques abscission zones and the chalaza-micropyle region of seeds. Together, these results indicate that DAISY is involved in suberin biosynthesis and in the formation of protective layers in these tissues, and in the response to unfavourable environmental conditions.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/genética , Lipídeos/biossíntese , Raízes de Plantas/enzimologia , Sementes/enzimologia , Acetiltransferases/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Secas , Elongases de Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Lipídeos/genética , Mutagênese Insercional , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Poliésteres/metabolismo , RNA de Plantas/genética , Sementes/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Transcrição Gênica/efeitos dos fármacos
7.
Nat Genet ; 39(7): 901-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589508

RESUMO

It is commonly thought that deep phylogenetic conservation of plant microRNAs (miRNAs) and their targets indicates conserved regulatory functions. We show that the blind (bl) mutant of Petunia hybrida and the fistulata (fis) mutant of Antirrhinum majus, which have similar homeotic phenotypes, are recessive alleles of two homologous miRNA-encoding genes. The BL and FIS genes control the spatial restriction of homeotic class C genes to the inner floral whorls, but their ubiquitous early floral expression patterns are in contradiction with a potential role in patterning C gene expression. We provide genetic evidence for the unexpected function of the MIRFIS and MIRBL genes in the center of the flower and propose a dynamic mechanism underlying their regulatory role. Notably, Arabidopsis thaliana, a more distantly related species, also contains this miRNA module but does not seem to use it to confine early C gene expression to the center of the flower.


Assuntos
Antirrhinum/genética , Sequência Conservada , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Homeobox/fisiologia , MicroRNAs/fisiologia , Petunia/genética , Antirrhinum/química , Padronização Corporal/fisiologia , MicroRNAs/química , Dados de Sequência Molecular , Petunia/química
8.
Plant Cell ; 18(2): 321-39, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415209

RESUMO

The outermost epidermal cell wall is specialized to withstand pathogens and natural stresses, and lipid-based cuticular polymers are the major barrier against incursions. The Arabidopsis thaliana mutant bodyguard (bdg), which exhibits defects characteristic of the loss of cuticle structure not attributable to a lack of typical cutin monomers, unexpectedly accumulates significantly more cell wall-bound lipids and epicuticular waxes than wild-type plants. Pleiotropic effects of the bdg mutation on growth, viability, and cell differentiation are also observed. BDG encodes a member of the alpha/beta-hydrolase fold protein superfamily and is expressed exclusively in epidermal cells. Using Strep-tag epitope-tagged BDG for mutant complementation and immunolocalization, we show that BDG is a polarly localized protein that accumulates in the outermost cell wall in the epidermis. With regard to the appearance and structure of the cuticle, the phenotype conferred by bdg is reminiscent of that of transgenic Arabidopsis plants that express an extracellular fungal cutinase, suggesting that bdg may be incapable of completing the polymerization of carboxylic esters in the cuticular layer of the cell wall or the cuticle proper. We propose that BDG codes for an extracellular synthase responsible for the formation of cuticle. The alternative hypothesis proposes that BDG controls the proliferation/differentiation status of the epidermis via an unknown mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Morfogênese , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clonagem Molecular , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hidrolases/química , Lipídeos/análise , Dados de Sequência Molecular , Especificidade de Órgãos , Fenótipo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/metabolismo , Carbonilação Proteica , Dobramento de Proteína , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Ceras/metabolismo
9.
Planta ; 224(2): 315-29, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16404574

RESUMO

In plants, extracellular matrix polymers built from polysaccharides and cuticular lipids have structural and protective functions. The cuticle is found to be ten times thinner in Arabidopsis thaliana (L.) Heynh than in many other plants, and there is evidence that it is unusual in having a high content of alpha-,omega-dicarboxylic fatty acids (FAs) in its polyesters. We designated the new organ fusion mutant hth-12 after it appeared to be allelic to adhesion of calyx edges (ace) and hothead (hth), upon molecular cloning of the gene by transposon tagging. This mutant is deficient in its ability to oxidize long-chain omega-hydroxy FAs to omega-oxo FAs, which results in leaf polyesters in decreased alpha-,omega-dicarboxylic FAs and increased omega-hydroxy FAs. These chemical phenotypes lead to disorder of the cuticle membrane structure in hth-12. ACE/HTH is a single-domain protein showing sequence similarity to long-chain FA omega-alcohol dehydrogenases from Candida species, and we hypothesize that it may catalyze the next step after cytochrome P450 FA omega-hydroxylases in the omega-oxidation pathway. We show that ACE/HTH is specifically expressed in epidermal cells. It appears very likely therefore that the changes in the amount of alpha-,omega-dicarboxylic FAs in hth-12 reflect the different composition of cuticular polyesters. The ACE/HTH gene is also expressed in root epidermal cells which do not form a polyester membrane on the exterior surface, thereby making it possible that the end products of the pathway, alpha-,omega-dicarboxylic FAs, are generally required for the cross-linking that ensures the integrity of the outer epidermal cell wall.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Matriz Extracelular/metabolismo , Ácidos Graxos/biossíntese , Alelos , Sequência de Aminoácidos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Sequência de Bases , Parede Celular/metabolismo , Clonagem Molecular , Elementos de DNA Transponíveis/genética , Ácidos Dicarboxílicos/análise , Ácidos Dicarboxílicos/química , Ácidos Graxos/análise , Ácidos Graxos/química , Flores/citologia , Flores/ultraestrutura , Lipídeos , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Epiderme Vegetal/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Development ; 131(15): 3649-59, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15229173

RESUMO

STYLOSA (STY) in Antirrhinum and LEUNIG (LUG) in Arabidopsis control the spatially correct expression of homeotic functions involved in the control of floral organ identity. We show here that the sty mutant also displays alteration in leaf venation patterns and hypersensitivity towards auxin and polar auxin transport inhibitors, demonstrating that STY has a more general role in plant development. STY and LUG are shown to be orthologues that encode proteins with structural relation to GRO/TUP1-like co-repressors. Using a yeast-based screen we found that STY interacts with several transcription factors, suggesting that STY, like GRO/TUP1, forms complexes in vivo. Proteins of the YABBY family, characterised by containing a partial HMG domain, represent a major group of such interactors. In vivo association of STY with one of the YABBY proteins, GRAMINIFOLIA (GRAM), is supported by enhanced phenotypic defects in sty gram double mutants, for instance in the control of phyllotaxis, floral homeotic functions and organ polarity. Accordingly, the STY and GRAM protein and mRNA expression patterns overlap in emerging lateral organ primordia. STY is expressed in all meristems and later becomes confined to the adaxial domain and (pro)vascular tissue. This pattern is similar to genes that promote adaxial identity, and, indeed, STY expression follows, although does not control, adaxial fate. We discuss the complex roles of STY and GRAM proteins in reproductive and vegetative development, performed in part in physical association but also independently.


Assuntos
Antirrhinum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Antirrhinum/genética , Antirrhinum/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Flores/anatomia & histologia , Flores/fisiologia , Hibridização In Situ , Ácidos Indolacéticos/metabolismo , Morfogênese/fisiologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Plant Mol Biol ; 56(5): 821-37, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15803418

RESUMO

In Arabidopsis, loss of function of the epidermis-specific FDH gene coding for a putative beta-ketoacyl-CoA synthase results in ectopic organ fusions in mutants. Corresponding mutants are not available for Antirrhinum majus, however, organ fusions can be induced in both species by chloroacetamide inhibitors of beta-ketoacyl-CoA synthases using a chemical genetics approach. We isolated the ortholog of FDH from Antirrhinum majus, the ANTIRRHINUM FIDDLEHEAD (AFI ) gene, and showed that AFI complements fdh when expressed in the epidermis under control of the FDH promoter. Like FDH, the AFI gene exhibits protodermis- and epidermis-specific expression, and its promoter directs the expression of reporter genes to the epidermis in transgenic Antirrhinum and Arabidopsis. We demonstrate down-regulation of the FDH promoter in the epidermis of the ovary septum, thereby supporting the assumption that FDH-like genes may directly facilitate the cell-cell interactions that need to occur during carpel fusion and pollen tube growth. Up-regulation of FDH in the stomium, on the other hand, provides evidence for its possible involvement in cell separation during anther dehiscence. Down-regulation of the FDH and AFI promoters in the septum is observed in transgenic Arabidopsis but not in Antirrhinum plants. This probably reflects differences in the ontogeny of the ovary septum between the two species. We also show that epidermis-specific FDH-like genes may not be able to efficiently elongate fatty acid chains when misexpressed in seeds.


Assuntos
Antirrhinum/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Acetamidas/farmacologia , Antirrhinum/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Epiderme Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA