Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(8)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339435

RESUMO

Many cells display considerable functional plasticity and depend on the regulation of numerous organelles and macromolecules for their maintenance. In large cells, organelles also need to be carefully distributed to supply the cell with essential resources and regulate intracellular activities. Having multiple copies of the largest eukaryotic organelle, the nucleus, epitomizes the importance of scaling gene products to large cytoplasmic volumes in skeletal muscle fibers. Scaling of intracellular constituents within mammalian muscle fibers is, however, poorly understood, but according to the myonuclear domain hypothesis, a single nucleus supports a finite amount of cytoplasm and is thus postulated to act autonomously, causing the nuclear number to be commensurate with fiber volume. In addition, the orderly peripheral distribution of myonuclei is a hallmark of normal cell physiology, as nuclear mispositioning is associated with impaired muscle function. Because underlying structures of complex cell behaviors are commonly formalized by scaling laws and thus emphasize emerging principles of size regulation, the work presented herein offers more of a unified conceptual platform based on principles from physics, chemistry, geometry, and biology to explore cell size-dependent correlations of the largest mammalian cell by means of scaling.


Assuntos
Núcleo Celular , Fibras Musculares Esqueléticas , Animais , Núcleo Celular/fisiologia , Citoplasma , Citosol , Tamanho Celular , Músculo Esquelético , Mamíferos
2.
Acta Physiol (Oxf) ; 236(3): e13879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017589

RESUMO

AIM: Investigate whether juvenile exercise could induce a long-term muscle memory, boosting the effects of exercise in adults. METHODS: We devised a 5-week climbing exercise scheme with food reward administered to male juvenile rats (post-natal week 4-9). Subsequently, the animals were subjected to 10 weeks of detraining (week 9-19) without climbing and finally retraining during week 19-21. RESULTS: The juvenile exercise increased fiber cross-sectional area (fCSA) by 21% (p = 0.0035), boosted nuclear accretion by 13% (p = 0.057), and reduced intraperitoneal fat content by 28% (p = 0.007) and body weight by 9% (p = 0.001). During detraining, the fCSA became similar in the animals that had been climbing compared to naive controls, but the elevated number of myonuclei induced by the climbing were maintained (15%, p = 0.033). When the naive rats were subjected to 2 weeks of adult exercise there was little effect on fCSA, while the previously trained rats displayed an increase of 19% (p = 0.0007). Similarly, when the rats were subjected to unilateral surgical overload in lieu of the adult climbing exercise, the increase in fCSA was 20% (p = 0.0039) in the climbing group, while there was no significant increase in naive rats when comparing to the contralateral leg. CONCLUSION: This demonstrates that juvenile exercise can establish a muscle memory boosting the effects of adult exercise. The juvenile climbing exercise with food reward also led to leaner animals with lower body weight. These differences were to some extent maintained throughout the adult detraining period in spite of all animals being fed ad libitum, indicating a form of body weight memory.


Assuntos
Fibras Musculares Esqueléticas , Condicionamento Físico Animal , Ratos , Masculino , Animais , Fibras Musculares Esqueléticas/fisiologia , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/fisiologia , Peso Corporal , Núcleo Celular
3.
PLoS Genet ; 17(11): e1009907, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752468

RESUMO

Muscle cells have different phenotypes adapted to different usage, and can be grossly divided into fast/glycolytic and slow/oxidative types. While most muscles contain a mixture of such fiber types, we aimed at providing a genome-wide analysis of the epigenetic landscape by ChIP-Seq in two muscle extremes, the fast/glycolytic extensor digitorum longus (EDL) and slow/oxidative soleus muscles. Muscle is a heterogeneous tissue where up to 60% of the nuclei can be of a different origin. Since cellular homogeneity is critical in epigenome-wide association studies we developed a new method for purifying skeletal muscle nuclei from whole tissue, based on the nuclear envelope protein Pericentriolar material 1 (PCM1) being a specific marker for myonuclei. Using antibody labelling and a magnetic-assisted sorting approach, we were able to sort out myonuclei with 95% purity in muscles from mice, rats and humans. The sorting eliminated influence from the other cell types in the tissue and improved the myo-specific signal. A genome-wide comparison of the epigenetic landscape in EDL and soleus reflected the differences in the functional properties of the two muscles, and revealed distinct regulatory programs involving distal enhancers, including a glycolytic super-enhancer in the EDL. The two muscles were also regulated by different sets of transcription factors; e.g. in soleus, binding sites for MEF2C, NFATC2 and PPARA were enriched, while in EDL MYOD1 and SIX1 binding sites were found to be overrepresented. In addition, more novel transcription factors for muscle regulation such as members of the MAF family, ZFX and ZBTB14 were identified.


Assuntos
Autoantígenos/imunologia , Proteínas de Ciclo Celular/imunologia , Núcleo Celular/metabolismo , Epigênese Genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Animais , Anticorpos , Glicólise , Humanos , Camundongos , Células Musculares , Oxirredução , Ratos
4.
Sci Rep ; 11(1): 16405, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385505

RESUMO

As the excitation-contraction coupling is inseparable during voluntary exercise, the relative contribution of the mechanical and neural input on hypertrophy-related molecular signalling is still poorly understood. Herein, we use a rat in-vivo strength exercise model with an electrically-induced standardized excitation pattern, previously shown to induce a load-dependent increase in myonuclear number and hypertrophy, to study acute effects of load on molecular signalling. We assessed protein abundance and specific phosphorylation of the four protein kinases FAK, mTOR, p70S6K and JNK after 2, 10 and 28 min of a low- or high-load contraction, in order to assess the effects of load, exercise duration and muscle-type on their response to exercise. Specific phosphorylation of mTOR, p70S6K and JNK was increased after 28 min of exercise under the low- and high-load protocol. Elevated phosphorylation of mTOR and JNK was detectable already after 2 and 10 min of exercise, respectively, but greatest after 28 min of exercise, and JNK phosphorylation was highly load-dependent. The abundance of all four kinases was higher in TA compared to EDL muscle, p70S6K abundance was increased after exercise in a load-independent manner, and FAK and JNK abundance was reduced after 28 min of exercise in both the exercised and control muscles. In conclusion, the current study shows that JNK activation after a single resistance exercise is load-specific, resembling the previously reported degree of myonuclear accrual and muscle hypertrophy with repetition of the exercise stimulus.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Músculo Esquelético/metabolismo , Animais , Hipertrofia/metabolismo , Masculino , Contração Muscular/fisiologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR
6.
Nat Commun ; 11(1): 6287, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293533

RESUMO

Mammalian cells exhibit remarkable diversity in cell size, but the factors that regulate establishment and maintenance of these sizes remain poorly understood. This is especially true for skeletal muscle, comprised of syncytial myofibers that each accrue hundreds of nuclei during development. Here, we directly explore the assumed causal relationship between multinucleation and establishment of normal size through titration of myonuclear numbers during mouse neonatal development. Three independent mouse models, where myonuclear numbers were reduced by 75, 55, or 25%, led to the discovery that myonuclei possess a reserve capacity to support larger functional cytoplasmic volumes in developing myofibers. Surprisingly, the results revealed an inverse relationship between nuclei numbers and reserve capacity. We propose that as myonuclear numbers increase, the range of transcriptional return on a per nuclear basis in myofibers diminishes, which accounts for both the absolute reliance developing myofibers have on nuclear accrual to establish size, and the limits of adaptability in adult skeletal muscle.


Assuntos
Núcleo Celular , Tamanho Celular , Músculo Esquelético/crescimento & desenvolvimento , Células Satélites de Músculo Esquelético/citologia , Animais , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
7.
Nat Commun ; 11(1): 6288, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293572

RESUMO

Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.


Assuntos
Núcleo Celular/química , Tamanho Celular , DNA/análise , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/crescimento & desenvolvimento , Adulto , Animais , Biópsia , Citoplasma , Feminino , Voluntários Saudáveis , Humanos , Microscopia Intravital , Masculino , Camundongos , Microscopia Confocal , Fibras Musculares Esqueléticas/química , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Análise de Célula Única , Adulto Jovem
9.
J Appl Physiol (1985) ; 126(6): 1636-1645, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991013

RESUMO

Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg.


Assuntos
Hipertrofia/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Feminino , Humanos , Masculino , Treinamento Resistido/métodos
10.
Am J Physiol Cell Physiol ; 311(4): C616-C629, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488660

RESUMO

It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase ß-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.


Assuntos
Hipertrofia/fisiopatologia , Músculo Esquelético/fisiologia , Animais , Contração Isométrica/fisiologia , Músculo Esquelético/metabolismo , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
11.
Arch Physiol Biochem ; 122(1): 36-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26707125

RESUMO

Glycosylated lysosomal membrane protein (GLMP) has been reported to enhance the expression from a peroxisome proliferator-activated receptor alpha (PPARα) responsive promoter, but also to be an integral lysosomal membrane protein. Using myotubes established from wild-type and Glmp(gt/gt) mice, the importance of GLMP in skeletal muscle was examined. Glmp(gt/gt) myotubes expressed a more glycolytic phenotype than wild-type myotubes. Myotubes from Glmp(gt/gt) mice metabolized glucose faster and had a larger pool of intracellular glycogen, while oleic acid uptake, storage and oxidation were significantly reduced. Gene expression analyses indicated lower expression of three PPAR-isoforms, a co-regulator of PPAR (PGC1α) and several genes important for lipid metabolism in Glmp(gt/gt) myotubes. However, ablation of GLMP did not seem to substantially impair the response to PPAR agonists. In conclusion, myotubes established from Glmp(gt/gt) mice were more glycolytic than myotubes from wild-type animals, in spite of no differences in muscle fiber types in vivo.


Assuntos
Ácidos Graxos/metabolismo , Deleção de Genes , Glucose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Proteínas de Membrana/deficiência , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Ácido Oleico/metabolismo , Oxirredução/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
12.
PLoS One ; 9(6): e99232, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936977

RESUMO

Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX) is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Musculares/genética , Músculo Esquelético/citologia , Mioblastos/metabolismo , Transporte Proteico , Ratos Wistar , Sarcômeros/metabolismo
13.
J Physiol ; 591(24): 6221-30, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24167222

RESUMO

Previous strength training with or without the use of anabolic steroids facilitates subsequent re-acquisition of muscle mass even after long intervening periods of inactivity. Based on in vivo and ex vivo microscopy we here propose a cellular memory mechanism residing in the muscle cells. Female mice were treated with testosterone propionate for 14 days, inducing a 66% increase in the number of myonuclei and a 77% increase in fibre cross-sectional area. Three weeks after removing the drug, fibre size was decreased to the same level as in sham treated animals, but the number of nuclei remained elevated for at least 3 months (>10% of the mouse lifespan). At this time, when the myonuclei-rich muscles were exposed to overload-exercise for 6 days, the fibre cross-sectional area increased by 31% while control muscles did not grow significantly. We suggest that the lasting, elevated number of myonuclei constitutes a cellular memory facilitating subsequent muscle overload hypertrophy. Our findings might have consequences for the exclusion time of doping offenders. Since the ability to generate new myonuclei is impaired in the elderly our data also invites speculation that it might be beneficial to perform strength training when young in order to benefit in senescence.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Testosterona/farmacologia , Animais , Núcleo Celular/patologia , Feminino , Hipertrofia/induzido quimicamente , Hipertrofia/patologia , Hipertrofia/fisiopatologia , Camundongos , Fibras Musculares Esqueléticas/patologia , Esforço Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...