Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 46, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504327

RESUMO

BACKGROUND: Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resistance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also outputs a GHS. Here, we introduce HairNet2, a quantitative deep-learning model which detects leaf hairs (trichomes) from images and outputs a segmentation mask and a Leaf Trichome Score (LTS). RESULTS: Trichomes of 1250 images were annotated (AnnCoT) and a combination of six Feature Extractor modules and five Segmentation modules were tested alongside a range of loss functions and data augmentation techniques. HairNet2 was further validated on the dataset used to build HairNet (CotLeaf-1), a similar dataset collected in two subsequent seasons (CotLeaf-2), and a dataset collected on two genetically diverse populations (CotLeaf-X). The main findings of this study are that (1) leaf number, environment and image position did not significantly affect results, (2) although GHS and LTS mostly correlated for individual GHS classes, results at the genotype level revealed a strong LTS heterogeneity within a given GHS class, (3) LTS correlated strongly with expert scoring of individual images. CONCLUSIONS: HairNet2 is the first quantitative and scalable deep-learning model able to measure leaf hairiness. Results obtained with HairNet2 concur with the qualitative values used by breeders at both extremes of the scale (GHS 1-2, and 5-5+), but interestingly suggest a reordering of genotypes with intermediate values (GHS 3-4+). Finely ranking mild phenotypes is a difficult task for humans. In addition to providing assistance with this task, HairNet2 opens the door to selecting plants with specific leaf hairiness characteristics which may be associated with other beneficial traits to deliver better varieties.

2.
Front Plant Sci ; 13: 895877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873986

RESUMO

Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.

3.
Front Plant Sci ; 13: 904131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646011

RESUMO

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD). While the Australian industry is the focus, CSIRO cultivars have global impact in North America, South America, and Europe. The program is unique compared with many other public and commercial breeding programs because it focuses on diverse and integrated research with commercial outcomes. It represents the full research pipeline, supporting extensive long-term fundamental molecular research; native and genetically modified (GM) trait development; germplasm enhancement focused on yield and fiber quality improvements; integration of third-party GM traits; all culminating in the release of new commercial cultivars. This review presents evidence of past breeding successes and outlines current breeding efforts, in the areas of yield and fiber quality improvement, as well as the development of germplasm that is resistant to pests, diseases and abiotic stressors. The success of the program is based on the development of superior germplasm largely through field phenotyping, together with strong commercial partnerships with CSD and Bayer CropScience. These relationships assist in having a shared focus and ensuring commercial impact is maintained, while also providing access to markets, traits, and technology. The historical successes, current foci and future requirements of the CSIRO cotton breeding program have been used to develop a framework designed to augment our breeding system for the future. This will focus on utilizing emerging technologies from the genome to phenome, as well as a panomics approach with data management and integration to develop, test and incorporate new technologies into a breeding program. In addition to streamlining the breeding pipeline for increased genetic gain, this technology will increase the speed of trait and marker identification for use in genome editing, genomic selection and molecular assisted breeding, ultimately producing novel germplasm that will meet the coming challenges of the 21st Century.

4.
Front Plant Sci ; 13: 895155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574064

RESUMO

Global plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the development of the numerous large germplasm resources now available in different countries. In recent decades, however, the maintenance and particularly the expansion of these germplasm resources have come under threat, and there has been a significant decline in investment in further collecting expeditions, an increase in global biosecurity restrictions, and restrictions placed on the open exchange of some commercial germplasm between breeders. The large size of most genebank collections, as well as constraints surrounding the availability and reliability of accurate germplasm passport data and physical or genetic characterization of the accessions in collections, limits germplasm utilization by plant breeders. To overcome these constraints, core collections, defined as a representative subset of the total germplasm collection, have gained popularity. Core collections aim to increase germplasm utilization by containing highly characterized germplasm that attempts to capture the majority of the variation in a whole collection. With the recent availability of many new genetic tools, the potential to unlock the value of these resources can now be realized. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program supplies 100% of the cotton cultivars grown in Australia. The program is reliant on the use of plant genetic resources for the development of improved cotton varieties to address emerging challenges in pest and disease resistance as well as the global changes occurring in the climate. Currently, the CSIRO germplasm collection is actively maintained but underutilized by plant breeders. This review presents an overview of the Australian cotton germplasm resources and discusses the appropriateness of a core collection for cotton breeding programs.

5.
Front Plant Sci ; 12: 653191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220882

RESUMO

Trifolium is the most used pastoral legume genus in temperate grassland systems, and a common feature in meadows and open space areas in cities and parks. Breeding of Trifolium spp. for pastoral production has been going on for over a century. However, the breeding targets have changed over the decades in response to different environmental and production pressures. Relatively small gains have been made in Trifolium breeding progress. Trifolium breeding programmes aim to maintain a broad genetic base to maximise variation. New Zealand is a global hub in Trifolium breeding, utilising exotic germplasm imported by the Margot Forde Germplasm Centre. This article describes the history of Trifolium breeding in New Zealand as well as the role and past successes of utilising genebanks in forage breeding. The impact of germplasm characterisation and evaluation in breeding programmes is also discussed. The history and challenges of Trifolium breeding and its effect on genetic gain can be used to inform future pre-breeding decisions in this genus, as well as being a model for other forage legumes.

6.
Front Plant Sci ; 12: 595030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815432

RESUMO

Determining the performance of white clover cultivars under drought conditions is critical in dry climates. However, comparing the differences in cultivar performance requires equivalent soil water content for all plants, to reduce the water deficit threshold eliciting stomatal closure. In this study, the objective was to compare the rate of stomatal closure in eighty white clover cultivars in response to soil drying. Two glasshouse experiments were conducted, and the daily transpiration rate was measured by weighing each pot. The transpiration rate of the drought-stressed plants were normalized against the control plants to minimize effects from transpiration fluctuations and was recorded as the normalized transpiration rate (NTR). The daily soil water content was expressed as the fraction of transpirable soil water (FTSW). The FTSW threshold (FTSWc) was estimated after which the NTR decreases linearly. The FTSWc marks the critical point where the stomata start to close, and transpiration decreases linearly. The significant difference (p < 0.05) between the 10 cultivars with the highest and lowest FTSWc demonstrates the cultivars would perform better in short- or long-term droughts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...