Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(2): e840-e850, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689900

RESUMO

Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.

2.
Phytochemistry ; 212: 113707, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149121

RESUMO

Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species. GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction.


Assuntos
Diterpenos , Rhododendron , Néctar de Plantas , Herbivoria , Flores
3.
Polymers (Basel) ; 15(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050252

RESUMO

Polymer 3D printing is an emerging technology highly relevant in diverse industries, including medicine, electronics, and robotics [...].

4.
Trends Ecol Evol ; 38(5): 435-445, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36737302

RESUMO

The global decline in insect diversity threatens pollination services, potentially impacting crop production and food security. Here, we argue that this looming pollination crisis is generally approached from an ecological standpoint, and that consideration of evolutionary principles offers a novel perspective. First, we outline that wild plant species have overcome 'pollination crises' throughout evolutionary history, and show how associated principles can be applied to crop pollination. We then highlight technological advances that can be used to adapt crop flowers for optimal pollination by local wild pollinators, especially by increasing generalization in pollination systems. Thus, synergies among fundamental evolutionary research, genetic engineering, and agro-ecological science provide a promising template for addressing a potential pollination crisis, complementing much-needed strategies focused on pollinator conservation.


Assuntos
Evolução Biológica , Polinização , Animais , Insetos , Flores , Adaptação Fisiológica
5.
Polymers (Basel) ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559882

RESUMO

Emerging polymer 3D-printing technologies are enabling the design and fabrication of mechanically efficient lattice structures with intricate microscale structures. During fabrication, manufacturing inconsistencies can affect mechanical efficiency, thereby driving a need to investigate how design and processing strategies influence outcomes. Here, mechanical testing is conducted for 3D-printed lattice structures while altering topology, relative density, and exposure time per layer using digital light processing (DLP). Experiments compared a Cube topology with 800 µm beams and Body-Centered Cube (BCC) topologies with 500 or 800 µm beams, all designed with 40% relative density. Cube lattices had the lowest mean measured relative density of ~42%, while the 500 µm BCC lattice had the highest relative density of ~55%. Elastic modulus, yield strength, and ultimate strength had a positive correlation with measured relative density when considering measurement distributions for thirty samples of each design. BCC lattices designed with 50%, 40%, and 30% relative densities were then fabricated with exposure-per-layer times of 1500 and 1750 ms. Increasing exposure time per layer resulted in higher scaling of mechanical properties to relative density compared to design alteration strategies. These results reveal how design and fabrication strategies affect mechanical performance of lattices suitable for diverse engineering applications.

6.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210168, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491597

RESUMO

Plant compounds associated with herbivore defence occur widely in floral nectar and can impact pollinator health. We showed previously that Rhododendron ponticum nectar contains grayanotoxin I (GTX I) at concentrations that are lethal or sublethal to honeybees and a solitary bee in the plant's non-native range in Ireland. Here we further examined this conflict and tested the hypotheses that nectar GTX I is subject to negative pollinator-mediated selection in the non-native range, but that phenotypic linkage between GTX I levels in nectar and leaves acts as a constraint on independent evolution. We found that nectar GTX I experienced negative directional selection in the non-native range, in contrast to the native Iberian range, and that the magnitude and frequency of pollinator limitation indicated that selection was pollinator-mediated. Surprisingly, nectar GTX I levels were decoupled from those of leaves in the non-native range, which may have assisted post-invasion evolution of nectar without compromising the anti-herbivore function of GTX I (here demonstrated in bioassays with an ecologically relevant herbivore). Our study emphasizes the centrality of pollinator health as a concept linked to the invasion process, and how post-invasion evolution can be targeted toward minimizing lethal or sub-lethal effects on pollinators. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Néctar de Plantas , Polinização , Animais , Abelhas , Flores , Herbivoria , Folhas de Planta , Néctar de Plantas/química
7.
3D Print Addit Manuf ; 9(6): 473-482, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36660745

RESUMO

Additive manufacturing enables the production of complex structures with emerging approaches showing great promise in the food industry for design customization. Three-dimensional food printing has benefits for providing personalized health and shape fabrication for consumers. Past studies have demonstrated positive consumer perceptions for 3D food printing, but there is still a need for consumer validation of the technology through consumption and rating of fabricated 3D-printed foods. This article measures consumer response on shape, taste, and fidelity for 3D-printed food designs. Participants (N = 28) were presented with a series of designs differing in shape complexity and ingredients (marzipan and chocolate) and provided ratings using a visual analog scale (100 mm line). The results show that fabricated shapes with higher complexity were preferred by participants with 8.8 ± 0.3 ratings over lower complexity shapes with 5.5 ± 0.4 ratings. Taste preference was primarily dependent on the material selection, with chocolate material preferred by participants with 8.2 ± 0.5 ratings over marzipan material with 6.0 ± 0.5. Results demonstrated that participants preferred 3D-printed shapes that achieved high fidelity in recreating their computer-aided design (CAD) with 7.3 ± 0.3 ratings that were greater than 5.5 ± 0.5 for low-fidelity prints. These findings demonstrate first measurements of 3D food printing from a consumer perspective and provide a foundation for future studies on personalized manufacturing and nutrition.

8.
Evol Lett ; 5(6): 636-643, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917402

RESUMO

Tripartite interactions between plants, herbivores, and pollinators hold fitness consequences for most angiosperms. However, little is known on how plants evolve in response-and in particular what the net selective outcomes are for traits of shared relevance to pollinators and herbivores. In this study, we manipulated herbivory ("presence" and "absence" treatments) and pollination ("open" and "hand pollination" treatments) in a full factorial common-garden experiment with woodland strawberry (Fragaria vesca L.). This design allowed us to quantify the relative importance and interactive effects of herbivore- and pollinator-mediated selection on nine traits related to plant defence and attraction. Our results showed that pollinators imposed stronger selection than herbivores on traits related to both direct and indirect (i.e., tritrophic) defence. However, conflicting selection was imposed on inflorescence density: a trait that appears to be shared by herbivores and pollinators as a host plant signal. However, in all cases, selection imposed by one agent depended largely on the presence or ecological effect of the other, suggesting that dynamic patterns of selection could be a common outcome of these interactions in natural populations. As a whole, our findings highlight the significance of plant-herbivore-pollinator interactions as potential drivers of evolutionary change, and reveal that pollinators likely play an underappreciated role as selective agents on direct and in direct plant defence.

9.
Comput Biol Med ; 138: 104913, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619409

RESUMO

Bone tissue engineering approaches have recently begun considering 3D printed lattices as viable scaffold solutions due to their highly tunable geometries and mechanical efficiency. However, scaffold design remains challenging due to the numerous biological and mechanical trade-offs related to lattice geometry. Here, we investigate novel tetragonal unit cell designs by independently adjusting unit cell height and width to find scaffolds with improved tissue growth while maintaining suitable scaffold mechanical properties for bone tissue engineering. Lattice tissue growth behavior is evaluated using a curvature-based growth model while elastic modulus is evaluated with finite element analysis. Computationally efficient modeling approaches are implemented to facilitate bulk analysis of lattice design trade-offs using design maps for biological and mechanical functionalities in relation to unit cell height and width for two contrasting unit cell topologies. Newly designed tetragonal lattices demonstrate higher tissue growth per unit volume and advantageous stiffness in preferred directions compared to cubically symmetric unit cells. When lattice beam diameter is fixed to 200 µm, Tetra and BC-Tetra lattices with elastic moduli of 200 MPa-400 MPa are compared for squashed, cubic, and stretched topologies. Squashed Tetra lattices demonstrated higher growth rates and growth densities compared to symmetrically cubic lattices. BC-Tetra lattices with the same range of elastic moduli show squashed lattices tend to achieve higher growth rates, whereas stretched lattices promote higher growth density. The results suggest tetragonal unit cells provide favorable properties for biological and mechanical tailoring, therefore enabling new strategies for diverse patient needs and applications in regenerative medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Osso e Ossos , Módulo de Elasticidade , Humanos , Porosidade
10.
Polymers (Basel) ; 13(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066639

RESUMO

Polymer 3D printing is an emerging technology with recent research translating towards increased use in industry, particularly in medical fields. Polymer printing is advantageous because it enables printing low-cost functional parts with diverse properties and capabilities. Here, we provide a review of recent research advances for polymer 3D printing by investigating research related to materials, processes, and design strategies for medical applications. Research in materials has led to the development of polymers with advantageous characteristics for mechanics and biocompatibility, with tuning of mechanical properties achieved by altering printing process parameters. Suitable polymer printing processes include extrusion, resin, and powder 3D printing, which enable directed material deposition for the design of advantageous and customized architectures. Design strategies, such as hierarchical distribution of materials, enable balancing of conflicting properties, such as mechanical and biological needs for tissue scaffolds. Further medical applications reviewed include safety equipment, dental implants, and drug delivery systems, with findings suggesting a need for improved design methods to navigate the complex decision space enabled by 3D printing. Further research across these areas will lead to continued improvement of 3D-printed design performance that is essential for advancing frontiers across engineering and medicine.

11.
Trends Plant Sci ; 25(6): 577-589, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407697

RESUMO

The need to reduce pollinator exposure to harmful pesticides has led to calls to expedite the adoption of integrated pest management (IPM). We make the case that IPM is not explicitly 'pollinator friendly', but rather must be adapted to reduce impacts on pollinators and to facilitate synergies between crop pollination and pest control practices and ecosystem services. To reconcile these diverse needs, we introduce a systematic framework for 'integrated pest and pollinator management' (IPPM). We also highlight novel tools to unify monitoring and economic decision-making processes for IPPM and outline key policy actions and knowledge gaps. We propose that IPPM is needed to promote more coordinated, ecosystem-based strategies for sustainable food production, against the backdrop of increasing pesticide regulation and pollinator dependency in agriculture. VIDEO ABSTRACT.


Assuntos
Ecossistema , Praguicidas , Agricultura , Controle de Pragas , Polinização
12.
Sci Rep ; 10(1): 5899, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246069

RESUMO

Plant nutritional  quality can influence interactions between herbivores and their parasitoids. While most previous work has focused on a limited set of secondary plant metabolites, the tri-trophic effects of overall phenotypic resistance have been understudied. Furthermore, the joint effects of secondary and primary metabolites on parasitoids are almost unexplored. In this study, we compared the performance and survival of the parasitoid species Asecodes parviclava Thompson on wild woodland strawberry (Fragaria vesca L.) genotypes showing variation in resistance against the parasitoid's host, the strawberry leaf beetle (Galerucella tenella L.). Additionally, we related the metabolic profiles of these plant genotypes to the tritrophic outcomes in order to identify primary and secondary metabolites involved in regulating plant potential to facilitate parasitism. We found that parasitoid performance was strongly affected by plant genotype, but those differences in plant resistance to the herbivore were not reflected in parasitoid survival. These findings could be explained in particular by a significant link between parasitoid survival and foliar carbohydrate levels, which appeared to be the most important compounds for parasitism success. The fact that plant quality strongly affects parasitism should be further explored and utilized in plant breeding programs for a synergistic application in sustainable pest management.


Assuntos
Besouros/fisiologia , Resistência à Doença/genética , Fragaria/genética , Herbivoria , Vespas/fisiologia , Animais , Cadeia Alimentar , Fragaria/parasitologia , Interações Hospedeiro-Parasita/genética , Controle Biológico de Vetores/métodos , Melhoramento Vegetal , Folhas de Planta/parasitologia
13.
Glob Chang Biol ; 26(2): 380-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621147

RESUMO

Natural hazards are naturally occurring physical events that can impact human welfare both directly and indirectly, via shocks to ecosystems and the services they provide. Animal-mediated pollination is critical for sustaining agricultural economies and biodiversity, yet stands to lose both from present exposure to natural hazards, and future climate-driven shifts in their distribution, frequency, and intensity. In contrast to the depth of knowledge available for anthropogenic-related threats, our understanding of how naturally occurring extreme events impact pollinators and pollination has not yet been synthesized. We performed a systematic review and meta-analysis to examine the potential impacts of natural hazards on pollinators and pollination in natural and cultivated systems. From a total of 117 studies (74% of which were observational), we found evidence of community and population-level impacts to plants and pollinators from seven hazard types, including climatological (extreme heat, fire, drought), hydrological (flooding), meteorological (hurricanes), and geophysical (volcanic activity, tsunamis). Plant and pollinator response depended on the type of natural hazard and level of biological organization observed; 19% of cases reported no significant impact, whereas the majority of hazards held consistent negative impacts. However, the effects of fire were mixed, but taxa specific; meta-analysis revealed that bee abundance and species richness tended to increase in response to fire, differing significantly from the mainly negative response of Lepidoptera. Building from this synthesis, we highlight important future directions for pollination-focused natural hazard research, including the need to: (a) advance climate change research beyond static "mean-level" changes by better incorporating "shock" events; (b) identify impacts at higher levels of organization, including ecological networks and co-evolutionary history; and (c) address the notable gap in crop pollination services research-particularly in developing regions of the world. We conclude by discussing implications for safeguarding pollination services in the face of global climate change.


Assuntos
Biodiversidade , Incêndios , Polinização , Animais , Abelhas , Mudança Climática , Ecossistema , Humanos
14.
Materials (Basel) ; 12(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344956

RESUMO

Emerging 3D printing technologies are enabling the fabrication of complex scaffold structures for diverse medical applications. 3D printing allows controlled material placement for configuring porous tissue scaffolds with tailored properties for desired mechanical stiffness, nutrient transport, and biological growth. However, tuning tissue scaffold functionality requires navigation of a complex design space with numerous trade-offs that require multidisciplinary assessment. Integrated design approaches that encourage iteration and consideration of diverse processes including design configuration, material selection, and simulation models provide a basis for improving design performance. In this review, recent advances in design, fabrication, and assessment of 3D printed tissue scaffolds are investigated with a focus on bone tissue engineering. Bone healing and fusion are examples that demonstrate the needs of integrated design approaches in leveraging new materials and 3D printing processes for specified clinical applications. Current challenges for integrated design are outlined and emphasize directions where new research may lead to significant improvements in personalized medicine and emerging areas in healthcare.

15.
Ecology ; 100(4): e02621, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30667044

RESUMO

Floral chemistry mediates plant interactions with herbivores, pathogens, and pollinators. The chemistry of floral nectar and pollen, the primary food rewards for pollinators, can affect both plant reproduction and pollinator health. Although the existence and functional significance of nectar and pollen secondary metabolites has long been known, comprehensive quantitative characterizations of secondary chemistry exist for only a few species. Moreover, little is known about intraspecific variation in nectar and pollen chemical profiles. Because the ecological effects of secondary chemicals are dose-dependent, heterogeneity across genotypes and populations could influence floral trait evolution and pollinator foraging ecology. To better understand within- and across-species heterogeneity in nectar and pollen secondary chemistry, we undertook exhaustive LC-MS and LC-UV-based chemical characterizations of nectar and pollen methanol extracts from 31 cultivated and wild plant species. Nectar and pollen were collected from farms and natural areas in Massachusetts, Vermont, and California, USA, in 2013 and 2014. For wild species, we aimed to collect 10 samples from each of three sites. For agricultural and horticultural species, we aimed for 10 samples from each of three cultivars. Our data set (1,535 samples, 102 identified compounds) identifies and quantifies each compound recorded in methanolic extracts, and includes chemical metadata that describe the molecular mass, retention time, and chemical classification of each compound. A reference phylogeny is included for comparative analyses. We found that each species possessed a distinct chemical profile; moreover, within species, few compounds were found in both nectar and pollen. The most common secondary chemical classes were flavonoids, terpenoids, alkaloids and amines, and chlorogenic acids. The most common compounds were quercetin and kaempferol glycosides. Pollens contained high concentrations of hydroxycinnamoyl-spermidine conjugates, mainly triscoumaroyl and trisferuloyl spermidine, found in 71% of species. When present, pollen alkaloids and spermidines had median nonzero concentrations of 23,000 µmol/L (median 52% of recorded micromolar composition). Although secondary chemistry was qualitatively consistent within each species and sample type, we found significant quantitative heterogeneity across cultivars and sites. These data provide a standard reference for future ecological and evolutionary research on nectar and pollen secondary chemistry, including its role in pollinator health and plant reproduction. Data are published under a Creative Commons Attribution License (CC BY 3.0 US) and may be freely used if properly cited.

16.
Front Plant Sci ; 9: 1357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319666

RESUMO

Crop domestication can lead to weakened expression of plant defences, with repercussions for herbivore and pathogen susceptibility. However, little is known about how domestication alters traits that mediate other important ecological interactions in crops, such as pollination. Secondary metabolites, which underpin many defence responses in plants, also occur widely in nectar and pollen and influence plant-pollinator interactions. Thus, domestication may also affect secondary compounds in floral rewards, with potential consequences for pollinators. To test this hypothesis, we chemically analysed nectar and pollen from wild and cultivated plants of highbush blueberry (Vaccinium corymbosum L.), before conducting an artificial diet bioassay to examine pollinator-pathogen interactions. Our results indicated that domestication has significantly altered the chemical composition of V. corymbosum nectar and pollen, and reduced pollen chemical diversity in cultivated plants. Of 20 plant metabolites identified in floral rewards, 13 differed significantly between wild and cultivated plants, with a majority showing positive associations with wild compared to cultivated plants. These included the amino acid phenylalanine (4.5 times higher in wild nectar, 11 times higher in wild pollen), a known bee phagostimulant and essential nutrient; and the antimicrobial caffeic acid ester 4-O-caffeoylshikimic acid (two times higher in wild nectar). We assessed the possible biological relevance of variation in caffeic acid esters in bioassays, using the commercially available 3-O-caffeoylquinic acid. This compound reduced Bombus impatiens infection by a prominent gut pathogen (Crithidia) at concentrations that occurred in wild but not cultivated plants, suggesting that domestication may influence floral traits with consequences for bee health. Appreciable levels of genetic variation and heritability were found for most floral reward chemical traits, indicating good potential for selective breeding. Our study provides the first assessment of plant domestication effects on floral reward chemistry and its potential repercussions for pollinator health. Given the central importance of pollinators for agriculture, we discuss the need to extend such investigations to pollinator-dependent crops more generally and elaborate on future research directions to ascertain wider trends, consequences for pollinators, mechanisms, and breeding solutions.

17.
Evol Appl ; 11(8): 1293-1304, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151041

RESUMO

Crop wild relatives (CWRs) offer novel genetic resources for crop improvement. To assist in the urgent need to collect and conserve CWR germplasm, we advance here the concept of an "evolutionary" approach. Central to this approach is the predictive use of spatial proxies of evolutionary processes (natural selection, gene flow and genetic drift) to locate and capture genetic variation. As a means to help validate this concept, we screened wild-collected genotypes of woodland strawberry (Fragaria vesca) in a common garden. A quantitative genetic approach was then used to test the ability of two such proxies-mesoclimatic variation (a proxy of natural selection) and landscape isolation and geographic distance between populations (proxies of gene flow potential)-to predict spatial genetic variation in three quantitative traits (plant size, early season flower number and flower frost tolerance). Our results indicated a significant but variable effect of mesoclimatic conditions in structuring genetic variation in the wild, in addition to other undetermined regional scale processes. As a proxy of gene flow potential, landscape isolation was also a likely determinant of observed patterns-as opposed to, and regardless of, geographic distance between populations. We conclude that harnessing proxies of adaptive and nonadaptive evolutionary processes could provide a robust and valuable means to identify genetic variation in CWRs. We thus advocate wider use and development of this approach amongst researchers, breeders and practitioners, to expedite the capture and in situ conservation of genetic resources provided by crop wild relatives.

18.
Biomech Model Mechanobiol ; 17(5): 1481-1495, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29876780

RESUMO

Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies considered. In simulations, tissue was seeded on surfaces with new tissue growing in empty voxels with positive curvature. Growth was fastest on topologies with more beams per unit cell when unit cell volume/porosity was fixed, but fastest for topologies with fewer beams per unit cell when beam width/porosity was fixed. Tissue filled proportional to mean positive surface curvature per volume. Faster filling scaffolds had lower permeability, which is important to support nutrient transport, and highlights a need for tuning geometries appropriately for conflicting trade-offs. A balance among trade-offs was found for scaffolds with beam diameters of about [Formula: see text] and 50% porosity, therefore providing the opportunity for further optimization based on criteria such as mechanical factors. Overall, these findings provide insight into how curvature-based tissue growth progresses in complex scaffold geometries, and a foundation for developing optimized scaffolds for clinical applications.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Força Compressiva , Simulação por Computador , Humanos , Teste de Materiais , Permeabilidade , Porosidade , Análise de Regressão , Software
19.
Proc Natl Acad Sci U S A ; 114(39): E8147-E8154, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900011

RESUMO

Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.


Assuntos
Biologia Computacional , Modelos Teóricos , Contração Muscular/fisiologia , Músculos/fisiologia , Miosinas/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Fenômenos Biomecânicos/fisiologia , Humanos
20.
PLoS One ; 12(8): e0182902, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797066

RESUMO

Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.


Assuntos
Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Simulação por Computador , Módulo de Elasticidade , Teste de Materiais , Permeabilidade , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...