Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 1026646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304584

RESUMO

A line of studies in the 1960s-1980s suggested that muscle relaxants do not work uniformly on all skeletal muscles, though its mechanism has not been clarified. We showed here that a classical non-depolarizing muscle relaxant pancuronium inhibits fast muscle fibers at lower concentration compared to slow muscle fibers in zebrafish. The difference of effective concentration was observed in locomotion caused by tactile stimulation as well as in synaptic currents of the neuromuscular junction induced by motor neuron excitation. We further showed that this difference arises from the different composition of acetylcholine receptors between slow and fast muscle fibers in the neuromuscular junction of zebrafish. It will be interesting to examine the difference of subunit composition and sensitivity to muscle relaxants in other species.

2.
J Neurosci ; 42(17): 3523-3536, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35332083

RESUMO

Emerging evidence shows that spontaneous synaptic transmission plays crucial roles on neuronal functions through presynaptic molecular mechanisms distinct from that of action potential (AP)-evoked transmission. However, whether the synaptic vesicle (SV) population undergoing the two forms of transmission is segregated remains controversial due in part to the conflicting results observed in cultured neurons. Here we address this issue in intact neuromuscular synapses using transgenic zebrafish larvae expressing two different indicators targeted in the SVs: a pH-sensitive fluorescent protein, pHluorin, and a tag protein, HaloTag. By establishing a quantitative measure of recycled SV fractions, we found that ∼85% of SVs were mobilized by high-frequency AP firings. In contrast, spontaneously recycling SVs were mobilized only from <8% of SVs with a time constant of 45 min at 25°C, although prolonged AP inhibition mobilized an additional population with a delayed onset. The mobilization of the early-onset population was less temperature-sensitive and resistant to tetanus toxin, whereas that of the late-onset population was more sensitive to temperature and was inhibited by tetanus toxin, indicating that prolonged AP inhibition activated a distinct molecular machinery for spontaneous SV fusion. Therefore, the early-onset population limited to <8% was likely the only source of spontaneous release that occurred physiologically. We further showed that this limited population was independent from those reluctant to fuse during AP firing and was used in both the hypertonic stimulation and the immediate phase of AP-evoked releases, thereby matching the characteristics of the readily releasable pool.SIGNIFICANCE STATEMENT Synaptic vesicles (SVs) are divided into functionally distinct pools depending on how they respond to action potential (AP) firing. The origin of SVs used for spontaneous fusion remains enigmatic despite intensive studies in cultured preparations. We addressed this question in intact neuromuscular synapses and provided two findings. First, prolonged AP inhibition activated a distinct population of fusion, which needs to be distinguished from genuine spontaneous fusion arising from a highly limited fraction. Second, the limited fraction observed early in the AP inhibition period exhibited the characteristics of readily releasable pool in the subsequent round of stimulation. Our study revealed that the origin of spontaneous SV fusion is restricted to the readily releasable pool among the SV pools involved in AP-evoked fusion.


Assuntos
Vesículas Sinápticas , Toxina Tetânica , Animais , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Peixe-Zebra
3.
Methods Mol Biol ; 2417: 45-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099790

RESUMO

Newly generated synaptic vesicles (SVs) are re-acidified by the activity of the vacuolar-type H+-ATPases. Since H+ gradient across SV membrane drives neurotransmitter uptake into SVs, precise measurements of steady-state vesicular pH and dynamics of re-acidification process will provide important information concerning the H+-driven neurotransmitter uptake. Indeed, we recently demonstrated distinct features of steady state and dynamics of vesicular pH between glutamatergic vesicles and GABAergic vesicles in cultured hippocampal neurons. In this article, we focus on an experimental protocol and setup required to determine steady-state luminal pH of SVs in living neurons. This protocol is composed of efficient expression of a pH-sensitive fluorescent protein in the lumen of SVs in cultured neurons, and recordings of its fluorescence changes under a conventional fluorescent microscope during local applications of acidic buffer and ionophores-containing solution at a given pH. The method described here can be easily applied for measuring luminal pH of different types of secretory organelles and other acidic organelles such as lysosomes and endosomes in cultured cell preparations.


Assuntos
Vesículas Sinápticas , ATPases Vacuolares Próton-Translocadoras , Células Cultivadas , Hipocampo/metabolismo , Concentração de Íons de Hidrogênio , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Cell Rep ; 30(9): 2879-2888.e3, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130893

RESUMO

Peristalsis is indispensable for physiological function of the gut. The enteric nervous system (ENS) plays an important role in regulating peristalsis. While the neural network regulating anterograde peristalsis, which migrates from the oral end to the anal end, is characterized to some extent, retrograde peristalsis remains unresolved with regards to its neural regulation. Using forward genetics in zebrafish, we reveal that a population of neurons expressing a hyperpolarization-activated nucleotide-gated channel HCN4 specifically regulates retrograde peristalsis. When HCN4 channels are blocked by an HCN channel inhibitor or morpholinos blocking the protein expression, retrograde peristalsis is specifically attenuated. Conversely, when HCN4(+) neurons expressing channelrhodopsin are activated by illumination, retrograde peristalsis is enhanced while anterograde peristalsis remains unchanged. We propose that HCN4(+) neurons in the ENS forward activating signals toward the oral end and simultaneously stimulate local circuits regulating the circular muscle.


Assuntos
Trato Gastrointestinal/inervação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Peristaltismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Motilidade Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Larva/efeitos dos fármacos , Larva/fisiologia , Morfolinos/farmacologia , Optogenética , Peristaltismo/efeitos dos fármacos , Serotonina/metabolismo , Peixe-Zebra/genética
6.
Sci Rep ; 9(1): 4289, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862855

RESUMO

Ca2+ transport into synaptic vesicles (SVs) at the presynaptic terminals has been proposed to be an important process for regulating presynaptic [Ca2+] during stimulation as well as at rest. However, the molecular identity of the transport system remains elusive. Previous studies have demonstrated that isolated SVs exhibit two distinct Ca2+ transport systems depending on extra-vesicular (cytosolic) pH; one is mediated by a high affinity Ca2+ transporter which is active at neutral pH and the other is mediated by a low affinity Ca2+/H+ antiporter which is maximally active at alkaline pH of 8.5. In addition, synaptic vesicle glycoprotein 2 s (SV2s), a major SV component, have been proposed to contribute to Ca2+ clearance from the presynaptic cytoplasm. Here, we show that at physiological pH, the plasma membrane Ca2+ ATPases (PMCAs) are responsible for both the Ca2+/H+ exchange activity and Ca2+ uptake into SVs. The Ca2+/H+ exchange activity monitored by acidification assay exhibited high affinity for Ca2+ (Km ~ 400 nM) and characteristic divalent cation selectivity for the PMCAs. Both activities were remarkably reduced by PMCA blockers, but not by a blocker of the ATPase that transfers Ca2+ from the cytosol to the lumen of sarcoplasmic endoplasmic reticulum (SERCA) at physiological pH. Furthermore, we rule out the contribution of SV2s, putative Ca2+ transporters on SVs, since both Ca2+/H+ exchange activity and Ca2+ transport were unaffected in isolated vesicles derived from SV2-deficient brains. Finally, using a PMCA1-pHluorin construct that enabled us to monitor cellular distribution and recycling properties in living neurons, we demonstrated that PMCA1-pHluorin localized to intracellular acidic compartments and recycled at presynaptic terminals in an activity-dependent manner. Collectively, our results imply that vesicular PMCAs may play pivotal roles in both presynaptic Ca2+ homeostasis and the modulation of H+ gradient in SVs.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Transporte Biológico/fisiologia , Cálcio/metabolismo , Citosol/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vesículas Sinápticas/metabolismo
7.
Sci Rep ; 8(1): 15156, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310105

RESUMO

Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell type-specificity of these promoters has not been thoroughly tested in culture preparations. Here, by using hippocampal culture preparation from the VGAT-Venus transgenic mice, we examined the ability of five putative promoter sequences of glutamatergic-selective markers including synapsin I, α-CaMKII, the vesicular glutamate transporter 1 (VGLUT1), Dock10 and Prox1. Among these, a genomic fragment containing a 2.1 kb segment upstream of the translation start site (TSS) of the VGLUT1 implemented in a lentiviral vector with the Tet-Off inducible system achieved the highest preferential gene expression in glutamatergic neurons. Analysis of various lengths of the VGLUT1 promoter regions identified a segment between -2.1 kb and -1.4 kb from the TSS as a responsible element for the glutamatergic selectivity. Consistently, expression of channelrhodopsin under this promoter sequence allowed for selective light-evoked activation of excitatory neurons. Thus, the lentiviral system carrying the VGLUT1 promoter fragment can be used to effectively target exogenous gene expression to excitatory glutamatergic neurons in cultures.


Assuntos
Neurônios GABAérgicos/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Lentivirus/genética , Células Piramidais/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Potenciais de Ação , Animais , Células Cultivadas , Imunofluorescência , Ordem dos Genes , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Transgenes
8.
Proc Natl Acad Sci U S A ; 113(38): 10702-7, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601664

RESUMO

GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H(+) electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H(+) exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Exocitose/genética , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Neurônios/fisiologia , Neurotransmissores/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
9.
Cell Rep ; 12(11): 1887-901, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26344767

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR), which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs) as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Síndrome de Rett/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG/antagonistas & inibidores , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fenótipo , Síndrome de Rett/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Regulação para Cima
10.
J Neurosci ; 35(8): 3701-10, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716867

RESUMO

During synaptic vesicle (SV) recycling, the vacuolar-type H(+) ATPase creates a proton electrochemical gradient (ΔµH(+)) that drives neurotransmitter loading into SVs. Given the low estimates of free luminal protons, it has been envisioned that the influx of a limited number of protons suffices to establish ΔµH(+). Consistent with this, the time constant of SV re-acidification was reported to be <5 s, much faster than glutamate loading (τ of ∼ 15 s) and thus unlikely to be rate limiting for neurotransmitter loading. However, such estimates have relied on pHluorin-based probes that lack sensitivity in the lower luminal pH range. Here, we reexamined re-acidification kinetics using the mOrange2-based probe that should report the SV pH more accurately. In recordings from cultured mouse hippocampal neurons, we found that re-acidification took substantially longer (τ of ∼ 15 s) than estimated previously. In addition, we found that the SV lumen exhibited a large buffering capacity (∼ 57 mm/pH), corresponding to an accumulation of ∼ 1200 protons during re-acidification. Together, our results uncover hitherto unrecognized robust proton influx and storage in SVs that can restrict the rate of neurotransmitter refilling.


Assuntos
Prótons , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Células Cultivadas , Feminino , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
11.
Neurosci Lett ; 569: 142-7, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24708928

RESUMO

Valproic acid (VPA) has been used to treat epileptic patients because of its ability to potentiate GABA signaling in the brain. Despite its clinical significance, VPA administration during pregnancy increases the risk of congenital abnormalities, such as neural tube defects and neurodevelopmental disorders including autism. Furthermore, recent studies revealed that early postnatal administration of VPA also leads to neurodevelopmental deficits in rodents. Here, using cultured cortical neurons derived from postnatal day 1 rats, we examined whether exposure to VPA would affect synapse formation. When neurons were exposed to 1mM VPA during early development, expression of the vesicular GABA transporter (VGAT) was selectively reduced, whereas other synaptic markers, including the vesicular glutamate transporters 1 and 2 (VGLUT1 and 2), were not affected. This VPA effect was mediated through inhibition of histone deacetylases (HDACs), since the effects were mostly recapitulated by an HDAC inhibitor, trichostatin A, but not by a VPA derivative, valpromide, which lacks HDAC inhibitor activity. Immunocytochemical analysis demonstrated that VPA exposure resulted in a retardation of axonal growth specific to GABAergic neurons and a decrease in VGAT-positive synapses. Since disturbance of the excitatory and inhibitory (E-I) balance has been implicated as a potential cause of multiple psychiatric disorders, our results may account for one of the cellular mechanisms underlying the pathogenesis of VPA-induced neurodevelopmental impairments.


Assuntos
Anticonvulsivantes/farmacologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Inibidores de Histona Desacetilases/farmacologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Sinapses/fisiologia , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
J Neurosci Res ; 88(16): 3433-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20890994

RESUMO

Synaptic plasticity, especially structural plasticity, is thought to be a basis for long-lasting memory. We previously reported that, in rat hippocampus slice cultures, repeated induction of long-term depression (LTD) by application of a metabotropic glutamate receptor (mGluR) agonist led to slowly developing, long-lasting synaptic suppression coupled with synapse elimination. We referred to this phenomenon as LOSS (LTD-repetition-operated synaptic suppression) to discriminate it from conventional single LTD and proposed it as a model for analyzing structural plasticity. Recently, proneurotrophin-activated p75(NTR) signaling has been gaining attention as a possible pathway for the regulation of both neuronal apoptosis and synaptic plasticity. In this study, we examined whether this signaling has a role in the establishment of LOSS. The application of anisomycin indicated that, for LOSS to occur, novel protein synthesis is needed within 6 hr after the induction of mGluR-dependent LTD, which demonstrates that LOSS is an active process and therefore is not due to withering in response to a shortage of trophic factors. Furthermore, we found that pro-BDNF (a species of proneurotrophins) is newly synthesized within 6 hr after the induction of LTD. We therefore exogenously applied a cleavage-resistant form of pro-BDNF, finding synaptic suppression similar to LOSS. LOSS could be abolished by the application of an antibody that binds to and neutralizes p75(NTR) following repeated LTD induction. These results suggest involvement of the p75(NTR) signaling pathway in the long-lasting decremental form of synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Apoptose/fisiologia , Técnicas In Vitro , Fatores de Crescimento Neural/metabolismo , Inibição Neural/fisiologia , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Transdução de Sinais/fisiologia
13.
Eur J Neurosci ; 24(6): 1606-16, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17004924

RESUMO

Short- and long-lasting synaptic plasticity is assumed to be the cellular basis of short- and long-lasting memory, respectively. However, the cellular consequences leading to the long-lasting synaptic plasticity, assumed to include the processes of synapse formation and elimination, remain unknown. Using hippocampal slices maintained stably in culture, we found previously that the repeated induction of long-term potentiation (LTP) triggered a slowly developing long-lasting enhancement in synaptic transmission strength accompanied by synapse formation, which was separate from LTP itself. We recently reported a phenomenon apparently of a mirror-image effect. The repeated activations of metabotropic glutamate receptor (mGluR), which induces long-term depression (LTD), triggered a long-lasting reduction in synaptic strength accompanied by synapse elimination. To clarify whether the reported long-lasting effect was specific to the drugs used previously and whether the effect was specific to mGluR-mediated LTD, we exposed the cultured slices repeatedly to another Group I metabotropic glutamate receptor (mGluR) agonist, an N-methyl-d-aspartate receptor agonist, and a Na+/K+-pump inhibitor. All these treatments resulted in an equivalent long-lasting synaptic reduction/elimination when repeated three times, indicating that the repeated LTD induction leads to synapse elimination. The independence of synapse elimination to the means of LTD induction suggests that the signals leading to short-term plasticity and long-term plasticity are independent. Detailed inspections in the representative case of mGluR activation revealed that the reduction in synaptic strength developed with a approximately 1-week delay from the decrease in the number of synaptic structures. This synapse elimination should be unique as it is activity-dependent rather than inactivity-dependent.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Hipocampo/citologia , Imuno-Histoquímica/métodos , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Microscopia Eletrônica de Transmissão/métodos , N-Metilaspartato/farmacologia , Neurônios/efeitos da radiação , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Sinaptofisina/metabolismo
14.
Appl Environ Microbiol ; 72(4): 2394-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16597936

RESUMO

Gordonia sp. strain P8219, a strain able to decompose di-2-ethylhexyl phthalate, was isolated from machine oil-contaminated soil. Mono-2-ethylhexyl phthalate hydrolase was purified from cell extracts of this strain. This enzyme was a 32,164-Da homodimeric protein, and it effectively hydrolyzed monophthalate esters, such as monoethyl, monobutyl, monohexyl, and mono-2-ethylhexyl phthalate. The K(m) and V(max) values for mono-2-ethylhexyl phthalate were 26.9 +/- 4.3 microM and 18.1 +/- 0.9 micromol/min . mg protein, respectively. The deduced amino acid sequence of the enzyme exhibited less than 30% homology with those of meta-cleavage hydrolases which are serine hydrolases but exhibited no significant homology with the sequences of serine esterases. The pentapeptide motif GXSXG, which is conserved in serine hydrolases, was present in the sequence. The enzymatic properties and features of the primary structure suggested that this enzyme is a novel enzyme belonging to an independent group of serine hydrolases.


Assuntos
Dietilexilftalato/análogos & derivados , Dietilexilftalato/metabolismo , Bactéria Gordonia/enzimologia , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Cinética , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Brain Res ; 1042(1): 99-107, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15823258

RESUMO

Synaptic plasticity, the cellular basis of memory, operates in a bidirectional manner. LTP (long-term potentiation) is followed by structural changes that may lead to the formation of new synapses. However, little is known whether LTD (long-term depression) is followed by morphological changes. Here we show that the repetitive induction of metabotropic glutamate receptor (mGluR)-dependent LTD in stable cultures of rat hippocampal slices led to a slowly developing persistent (ranging over weeks) reduction in synaptic strength that was accompanied by the loss of synaptic structures. LTD was induced pharmacologically 1-3 times at 24-h intervals by applying aseptically ACPD (1-aminocyclopentane-1,3-dicarboxylic acid), an agonist of group I/II mGluR, and APV (2-amino-5-phosphonovalerate), an antagonist of the NMDA (N-methyl-D-aspartate) receptor. One ACPD/APV application induced LTD that lasted less than 24 h. After three LTD inductions, however, a gradual attenuation of the fEPSP (field excitatory postsynaptic potential) amplitude and a decrease in the number of pre- and postsynaptic structures were observed. The blockade of LTD by an mGluR antagonist or a protein phosphatase 2B inhibitor abolished the development of the synaptic attenuation. In contrast to our previous finding that the repetitive LTP induction triggered a slowly developing persistent synaptic enhancement, the incremental and decremental forms of synaptic plasticity appeared to occur symmetrically not only on the minutes-hours time order but also on the days-weeks time order.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Hipocampo/ultraestrutura , Neurônios/ultraestrutura , Técnicas de Cultura de Órgãos , Ratos , Sinapses/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...