Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 145(22): 7303-7311, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901634

RESUMO

Siderophores are metal chelators produced by microorganisms to facilitate binding and uptake of iron. The isolation and characterization of siderophores are impeded by typically low siderophore yields and the complexity of siderophore-containing extracts generated with traditional purification methods. We investigated titanium dioxide nanoparticle solid-phase extraction (TiO2 NP SPE) as a technique to selectively concentrate and purify siderophores from complex matrices for subsequent LC-MS detection and identification. TiO2 NP SPE showed a high binding capacity (15.7 ± 0.2 µmol mg-1 TiO2) for the model siderophore desferrioxamine B (DFOB) and proved robust to pH changes and the presence of EDTA. These are significant advances in comparison to immobilized metal affinity chromatography (IMAC). The TiO2 NP SPE was highly selective and recovered 77.6 ± 6.2% of DFOB spiked to a compositionally complex bacterial culture supernatant. The simple clean-up procedure removed the majority of contaminants and allowed direct detection of siderophores from the LC-MS base peak chromatogram. The 'untargeted' purification and analysis of an untreated supernatant of iron-deprived bacterial culture allowed for the direct identification of two known and three novel ferrioxamines. Thus, TiO2 NP SPE in combination with LC-MS offers great potential as a discovery platform for the purification and subsequent quantification or identification of novel siderophores of microbial origin.

2.
Appl Microbiol Biotechnol ; 103(17): 7241-7259, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31324941

RESUMO

The fungi Aureobasidium pullulans, Mortierella humilis, Trichoderma harzianum and Phoma glomerata were used to investigate the formation of selenium- and tellurium-containing nanoparticles during growth on selenium- and tellurium-containing media. Most organisms were able to grow on both selenium- and tellurium-containing media at concentrations of 1 mM resulting in extensive precipitation of elemental selenium and tellurium on fungal surfaces as observed by the red and black colour changes. Red or black deposits were confirmed as elemental selenium and tellurium, respectively. Selenium oxide and tellurium oxide were also found after growth of Trichoderma harzianum with 1 mM selenite and tellurite as well as the formation of elemental selenium and tellurium. The hyphal matrix provided nucleation sites for metalloid deposition with extracellular protein and extracellular polymeric substances localizing the resultant Se or Te nanoparticles. These findings are relevant to remedial treatments for selenium and tellurium and to novel approaches for selenium and tellurium biorecovery.


Assuntos
Fungos/metabolismo , Nanopartículas/microbiologia , Selênio/metabolismo , Telúrio/metabolismo , Biodegradação Ambiental , Fungos/classificação , Fungos/crescimento & desenvolvimento , Nanopartículas/química , Oxirredução , Compostos de Selênio/isolamento & purificação , Compostos de Selênio/metabolismo , Telúrio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...