Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(2): 137-151, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847650

RESUMO

Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS: This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.


Assuntos
Neoplasias , Proteômica , Humanos , Processamento de Proteína Pós-Traducional , Neoplasias/genética , Ubiquitina/metabolismo , Células Cultivadas , Proteínas Fetais/metabolismo , Proteínas Tirosina Quinases/metabolismo
2.
Structure ; 31(12): 1589-1603.e6, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37776857

RESUMO

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.


Assuntos
Chaperonas Moleculares , Poliubiquitina , Humanos , Poliubiquitina/química , Ligação Proteica , Cristalização , Estrutura Terciária de Proteína , Domínios Proteicos , Chaperonas Moleculares/metabolismo , Proteínas Fetais/metabolismo , Proteínas Tirosina Quinases/metabolismo
3.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398013

RESUMO

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1-UBA domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. Sequence analysis suggests an unusual architecture for the TNK1 UBA domain, but an experimentally-validated molecular structure is undetermined. To gain insight into TNK1 regulation, we fused the UBA domain to the 1TEL crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. A 1TEL search model enabled solution of the X-ray phases. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and to crystallize at protein concentrations as low as 0.1 mg/mL. Our studies support a mechanism of TELSAM fusion crystallization and show that TELSAM fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.

4.
Mol Cancer Res ; 20(2): 231-243, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34654719

RESUMO

PTOV1 is an oncogenic protein, initially identified in prostate cancer, that promotes proliferation, cell motility, and invasiveness. However, the mechanisms that regulate PTOV1 remain unclear. Here, we identify 14-3-3 as a PTOV1 interactor and show that high levels of 14-3-3 expression, like PTOV1, correlate with prostate cancer progression. We discover an SGK2-mediated phosphorylation of PTOV1 at S36, which is required for 14-3-3 binding. Disruption of the PTOV1-14-3-3 interaction results in an accumulation of PTOV1 in the nucleus and a proteasome-dependent reduction in PTOV1 protein levels. We find that loss of 14-3-3 binding leads to an increase in PTOV1 binding to the E3 ubiquitin ligase HUWE1, which promotes proteasomal degradation of PTOV1. Conversely, our data suggest that 14-3-3 stabilizes PTOV1 protein by sequestering PTOV1 in the cytosol and inhibiting its interaction with HUWE1. Finally, our data suggest that stabilization of the 14-3-3-bound form of PTOV1 promotes PTOV1-mediated expression of cJun, which drives cell-cycle progression in cancer. Together, these data provide a mechanism to understand the regulation of the oncoprotein PTOV1. IMPLICATIONS: These findings identify a potentially targetable mechanism that regulates the oncoprotein PTOV1.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Transfecção
5.
Nat Commun ; 12(1): 5337, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504101

RESUMO

TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.


Assuntos
Proteínas 14-3-3/genética , Proteínas Fetais/genética , Linfócitos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Tirosina Quinases/genética , Ubiquitina/genética , Proteínas 14-3-3/metabolismo , Células A549 , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas Fetais/antagonistas & inibidores , Proteínas Fetais/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Camundongos , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34027418

RESUMO

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Sirtuínas , Apoptose , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Mitocôndrias/genética , Fosforilação Oxidativa , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...