Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13371, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862560

RESUMO

Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.


Assuntos
Lacase , Talaromyces , Trichoderma , Talaromyces/enzimologia , Lacase/metabolismo , Lacase/química , Lacase/isolamento & purificação , Lacase/genética , Trichoderma/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/genética , Especificidade por Substrato , Cobre/metabolismo , Cinética , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/isolamento & purificação , Domínio Catalítico
2.
Biodegradation ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822999

RESUMO

The persistence and ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the environment necessitate effective remediation strategies. Hence, this study investigated the potential of purified Laccases, TlFLU1L and TpFLU12L, from two indigenous fungi Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12), respectively for the oxidation and detoxification of anthracene. Anthracene was degraded with vmax values of 3.51 ± 0.06 mg/L/h and 3.44 ± 0.06 mg/L/h, and Km values of 173.2 ± 0.06 mg/L and 73.3 ± 0.07 mg/L by TlFLU1L and TpFLU12L, respectively. The addition of a mediator compound 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to the reaction system significantly increased the degradation of anthracene, with up to a 2.9-fold increase in vmax value and up to threefold decrease in Km values of TlFLU1L and TpFLU12L. The GC-MS analysis of the metabolites suggests that anthracene degradation follows one new pathway unique to the ABTS system-hydroxylation and carboxylation of C-1 and C-2 position of anthracene to form 3-hydroxy-2-naphthoic acid, before undergoing dioxygenation and side chain removal to form chromone which was later converted into benzoic acid and CO2. This pathway contrasts with the common dioxygenation route observed in the free Laccase system, which is observed in the second degradation pathways. Furthermore, toxicity tests using V. parahaemolyticus and HT-22 cells, respectively, demonstrated the non-toxic nature of Laccase-ABTS-mediated metabolites. Intriguingly, analysis of the expression level of Alzheimer's related genes in HT-22 cells exposed to degradation products revealed no induction of neurotoxicity unlike untreated cells. These findings propose a paradigm shift for bioremediation by highlighting the Laccase-ABTS system as a promising green technology due to its efficiency with the discovery of a potentially less harmful degradation pathway, and the production of non-toxic metabolites.

3.
Sci Rep ; 12(1): 12601, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871260

RESUMO

Understanding the role of soil microbes and their associated extracellular enzymes in long-term grassland experiments presents an opportunity for testing relevant ecological questions on grassland nutrient dynamics and functioning. Veld fertilizer trials initiated in 1951 in South Africa were used to assess soil functional microbial diversity and their metabolic activities in the nutrient-poor grassland soils. Phosphorus and liming trials used for this specific study comprised of superphosphate (336 kg ha-1) and dolomitic lime (2250 kg ha-1) (P + L), superphosphate (336 kg ha-1) (+ P) and control trials. These soils were analyzed for their nutrient concentrations, pH, total cations and exchange acidity, microflora and extracellular enzyme activities. The analysed soil characteristics showed significant differences except nitrogen (N) and organic carbon (C) concentrations showing no significant differences. P-solubilizing, N-cycling and N-fixing microbial diversity varied among the different soil treatments. ß-glucosaminidase enzyme activity was high in control soils compared to P-fertilized and limed soils. Alkaline phosphatase showed increased activity in P-fertilized soils, whereas acid phosphatase showed increased activity in control soils. Therefore, the application of superphosphate and liming influences the relative abundance of bacterial communities with nutrient cycling and fixing functions which account for nutrient bioavailability in acidic and nutrient stressed grassland ecosystem soils.


Assuntos
Ecossistema , Solo , Disponibilidade Biológica , Carbono/análise , Pradaria , Nitrogênio/análise , Nutrientes/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...