Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mal Vasc ; 19(1): 51-6, 1994.
Artigo em Francês | MEDLINE | ID: mdl-8027682

RESUMO

The erythrocyte sedimentation rate is a complex phenomena involving a large number of parameters. The rate of sedimentation is highly dependent on the haematocrit, the internal viscosity of the red cells and the viscosity of the suspending medium and its composition. The experimental conditions also have a non-negligible effect (geometry and nature of the test tube, temperature, foreign substances in the medium...). In order to respond to the need for more precise and more rapid methods of analyzing the erythrocyte sedimentation rate, we developed new physical methods allowing a real time evaluation of the phenomena involved. Several of these new photothermal methods have already been applied for non-destructive evaluation of thin or layered material (such as composite material or glued structures) both in laboratory situations and in the industry. When a material is placed in a modulated laser beam, the incident rays absorbed heat the sample. The heat then diffuses throughout the material and the surface temperature of the sample increases locally with a periodicity. The surface thus emits a modulated flow of infrared radiation. The amplitude and phase shift of the photothermal signal generated is characteristically dependent of the optic and thermal properties of the material for a given modulation frequency. The early photothermal modelling based on a two-layer model and a physico-mathematical theory of red cell sedimentation proposed by S. Oka made it possible to simulate the phenomena as they occur over time. We hypothesize that the temperature gradients created within the sample are too small to create a convection current and that the all heat transfer occurs by conduction.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Sedimentação Sanguínea , Modelos Biológicos , Radiometria/métodos , Temperatura Alta , Humanos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...