Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 9(4)2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425942

RESUMO

Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.


Assuntos
Haptófitas/crescimento & desenvolvimento , Haptófitas/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/crescimento & desenvolvimento , Biodiversidade , Densidade Demográfica , Estações do Ano
2.
J Eukaryot Microbiol ; 64(4): 514-532, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27973742

RESUMO

Haptophyta encompasses more than 300 species of mostly marine pico- and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte-specific primers targeting the V4 region of the 18S, and the D1-D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte reference databases and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Taxonomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades consisting of environmental sequences only, possibly representing novel lineages from family to class. We also recorded new species for the area. Comparing coccolithophores by SEM with metabarcoding shows a good correspondence with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of haptophytes without cultured representatives, and to improve metabarcoding methodology.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Haptófitas/classificação , Haptófitas/ultraestrutura , Genes de RNAr , Haptófitas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microscopia Eletrônica de Varredura , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...