Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33798093

RESUMO

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Assuntos
Envelhecimento/metabolismo , Doenças dos Ductos Biliares/etiologia , Doenças dos Ductos Biliares/metabolismo , Caspase 8/metabolismo , Cistos/etiologia , Cistos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Apoptose , Biópsia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Imunofenotipagem , Hepatopatias/etiologia , Hepatopatias/metabolismo , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Necroptose
2.
Mol Cancer Res ; 17(7): 1493-1502, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30967480

RESUMO

Murine liver tumors often fail to recapitulate the complexity of human hepatocellular carcinoma (HCC), which might explain the difficulty to translate preclinical mouse studies into clinical science. The aim of this study was to evaluate a subtyping approach for murine liver cancer models with regard to etiology-defined categories of human HCC, comparing genomic changes, histomorphology, and IHC profiles. Sequencing and analysis of gene copy-number changes [by comparative genomic hybridization (CGH)] in comparison with etiology-dependent subsets of HCC patients of The Cancer Genome Atlas (TCGA) database were conducted using specimens (75 tumors) of five different HCC mouse models: diethylnitrosamine (DEN) treated wild-type C57BL/6 mice, c-Myc and AlbLTαß transgenic mice as well as TAK1LPC-KO and Mcl-1Δhep mice. Digital microscopy was used for the assessment of morphology and IHC of liver cell markers (A6-CK7/19, glutamine synthetase) in mouse and n = 61 human liver tumors. Tumor CGH profiles of DEN-treated mice and c-Myc transgenic mice matched alcohol-induced HCC, including morphologic findings (abundant inclusion bodies, fatty change) in the DEN model. Tumors from AlbLTαß transgenic mice and TAK1LPC-KO models revealed the highest overlap with NASH-HCC CGH profiles. Concordant morphology (steatosis, lymphocyte infiltration, intratumor heterogeneity) was found in AlbLTαß murine livers. CGH profiles from the Mcl-1Δhep model displayed similarities with hepatitis-induced HCC and characteristic human-like phenotypes (fatty change, intertumor and intratumor heterogeneity). IMPLICATIONS: Our findings demonstrate that stratifying preclinical mouse models along etiology-oriented genotypes and human-like phenotypes is feasible. This closer resemblance of preclinical models is expected to better recapitulate HCC subgroups and thus increase their informative value.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/classificação , Carcinoma Hepatocelular/patologia , Hibridização Genômica Comparativa , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/classificação , Neoplasias Hepáticas Experimentais/patologia , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Transgênicos
3.
Nature ; 531(7593): 253-7, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26934227

RESUMO

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Non-alcoholic fatty liver disease (NAFLD) affects a large proportion of the US population and is considered to be a metabolic predisposition to liver cancer. However, the role of adaptive immune responses in NAFLD-promoted HCC is largely unknown. Here we show, in mouse models and human samples, that dysregulation of lipid metabolism in NAFLD causes a selective loss of intrahepatic CD4(+) but not CD8(+) T lymphocytes, leading to accelerated hepatocarcinogenesis. We also demonstrate that CD4(+) T lymphocytes have greater mitochondrial mass than CD8(+) T lymphocytes and generate higher levels of mitochondrially derived reactive oxygen species (ROS). Disruption of mitochondrial function by linoleic acid, a fatty acid accumulated in NAFLD, causes more oxidative damage than other free fatty acids such as palmitic acid, and mediates selective loss of intrahepatic CD4(+) T lymphocytes. In vivo blockade of ROS reversed NAFLD-induced hepatic CD4(+) T lymphocyte decrease and delayed NAFLD-promoted HCC. Our results provide an unexpected link between lipid dysregulation and impaired anti-tumour surveillance.


Assuntos
Linfócitos T CD4-Positivos/patologia , Carcinogênese , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Colina/metabolismo , Dieta , Modelos Animais de Doenças , Genes myc , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Ácido Linoleico/metabolismo , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Hepatol ; 64(1): 94-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26348541

RESUMO

BACKGROUND & AIMS: The liver is frequently challenged by toxins and reactive oxygen species. Therefore, hepatocytes require cytoprotective strategies to cope with these insults. Since the transcription factors Nrf2 and NF-κB regulate the cellular antioxidant defense system and important survival pathways, we determined their individual and overlapping functions in the liver. METHODS: We generated mice lacking Nrf2 and the NF-κB RelA/p65 subunit in hepatocytes and we analyzed their liver by using histopathology, immunohistochemistry, quantitative RT-PCR, Western blot and Oxyblot analysis. Human inflammatory hepatocellular adenomas (iHCA) were analyzed by immunohistochemistry. RESULTS: Loss of either Nrf2 or NF-κB/RelA had only a minor effect on liver homeostasis, but the double knockout mice spontaneously developed liver inflammation and fibrosis. Upon aging, more than one-third of the female double mutant mice developed tumors, which histologically resemble human iHCA, a tumor that predominantly occurs in women. The mouse tumors also recapitulated the immunohistochemical marker profile characteristic for human iHCA. Moreover, pNRF2 and NF-κB RelA/p65 was not detectable in the nuclei of iHCA tumor cells. The mouse phenotype was not due to a synergistic effect of both transcription factors on cytoprotective Nrf2 target genes. Rather, loss of Nrf2 or NF-κB/RelA altered the expression of different genes, and the combination of these alterations likely affects liver homeostasis in the double mutant mice. CONCLUSIONS: Our results provide genetic evidence for a functional cross-talk of Nrf2 and NF-κB/RelA in hepatocytes, which protects the liver from necrosis, inflammation and fibrosis. Furthermore, the double mutant mice represent a valuable animal model for iHCA.


Assuntos
Adenoma/prevenção & controle , Hepatócitos/fisiologia , Neoplasias Hepáticas/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/fisiologia , Fator de Transcrição RelA/fisiologia , Animais , Feminino , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
5.
Clin Cancer Res ; 21(8): 1951-61, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25248380

RESUMO

PURPOSE: Morphologic intratumor heterogeneity is well known to exist in hepatocellular carcinoma (HCC), but very few systematic analyses of this phenomenon have been performed. The aim of this study was to comprehensively characterize morphologic intratumor heterogeneity in HCC. Also, taken into account were well-known immunohistochemical markers and molecular changes in liver cells that are considered in proposed classifications of liver cell neoplasms or discussed as molecular therapeutic targets. EXPERIMENTAL DESIGN: In HCC of 23 patients without medical pretreatment, a total of 120 tumor areas were defined. Analyzed were cell and tissue morphology, expression of the liver cell markers cytokeratin (CK)7, CD44, α-fetoprotein (AFP), epithelial cell adhesion molecule (EpCAM), and glutamine synthetase (GS) along with mutations of TP53 and CTNNB1, assayed by both Sanger and next-generation sequencing. RESULTS: Overall, intratumor heterogeneity was detectable in the majority of HCC cases (20 of 23, 87%). Heterogeneity solely on the level of morphology was found in 6 of 23 cases (26%), morphologic heterogeneity combined with immunohistochemical heterogeneity in 9 of 23 cases (39%), and heterogeneity with respect to morphologic, immunohistochemical, and mutational status of TP53 and CTNNB1 in 5 of 23 cases (22%). CONCLUSIONS: Our findings demonstrate that intratumor heterogeneity represents a challenge for the establishment of a robust HCC classification and may contribute to treatment failure and drug resistance in many cases of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Fatores de Risco , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem , beta Catenina/genética , beta Catenina/metabolismo
6.
Cancer Cell ; 26(4): 549-64, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25314080

RESUMO

Hepatocellular carcinoma (HCC), the fastest rising cancer in the United States and increasing in Europe, often occurs with nonalcoholic steatohepatitis (NASH). Mechanisms underlying NASH and NASH-induced HCC are largely unknown. We developed a mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet. This induced activated intrahepatic CD8(+) T cells, NKT cells, and inflammatory cytokines, similar to NASH patients. CD8(+) T cells and NKT cells but not myeloid cells promote NASH and HCC through interactions with hepatocytes. NKT cells primarily cause steatosis via secreted LIGHT, while CD8(+) and NKT cells cooperatively induce liver damage. Hepatocellular LTßR and canonical NF-κB signaling facilitate NASH-to-HCC transition, demonstrating that distinct molecular mechanisms determine NASH and HCC development.


Assuntos
Ativação Metabólica , Linfócitos T CD8-Positivos/imunologia , Fígado Gorduroso/imunologia , Hepatócitos/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...