Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(33): e2102362, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242431

RESUMO

Properties of emulsions highly depend on the interdroplet interactions and, thus, engineering interdroplet interactions at molecular scale are essential to achieve desired emulsion systems. Here, attractive Pickering emulsion gels (APEGs) are designed and prepared by bridging neighboring particle-stabilized droplets via telechelic polymers. In the APEGs, each telechelic molecule with two amino end groups can simultaneously bind to two carboxyl functionalized nanoparticles in two neighboring droplets, forming a bridged network. The APEG systems show typical shear-thinning behaviors and their viscoelastic properties are tunable by temperature, pH, and molecular weight of the telechelic polymers, making them ideal for direct 3D printing. The APEGs can be photopolymerized to prepare APEG-templated porous materials and their microstructures can be tailored to optimize their performances, making the APEG systems promising for a wide range of applications.

2.
Phys Rev E ; 95(4-1): 043105, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505795

RESUMO

Microfluidic flow-focusing devices offer excellent control over fluid flow, enabling formation of drops with a narrow size distribution. However, the throughput of microfluidic flow-focusing devices is limited and scale-up through operation of multiple drop makers in parallel often compromises the robustness of their operation. We demonstrate that parallelization is facilitated if the outer phase is injected from the direction opposite to that of the inner phase, because the fluid injection flow rate, where the drop formation transitions from the squeezing into the dripping regime, is shifted towards higher values.

3.
Langmuir ; 32(21): 5350-5, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27192611

RESUMO

Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients.

4.
Lab Chip ; 15(15): 3132-7, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26087992

RESUMO

We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

5.
J Aerosol Sci ; 46: 7-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23658467

RESUMO

The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df ) and mass-mobility exponent (Dfm ) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace.

6.
Langmuir ; 27(10): 6358-67, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21488641

RESUMO

Multiparticle sintering is encountered in almost all high temperature processes for material synthesis (titania, silica, and nickel) and energy generation (e.g., fly ash formation) resulting in aggregates of primary particles (hard- or sinter-bonded agglomerates). This mechanism of particle growth is investigated quantitatively by mass and energy balances during viscous sintering of amorphous aerosol materials (e.g., SiO(2) and polymers) that typically have a distribution of sizes and complex morphology. This model is validated at limited cases of sintering between two (equally or unequally sized) particles, and chains of particles. The evolution of morphology, surface area and radii of gyration of multiparticle aggregates are elucidated for various sizes and initial fractal dimension. For each of these structures that had been generated by diffusion limited (DLA), cluster-cluster (DLCA), and ballistic particle-cluster agglomeration (BPCA) the surface area evolution is monitored and found to scale differently than that of the radius of gyration (moment of inertia). Expressions are proposed for the evolution of fractal dimension and the surface area of aggregates undergoing viscous sintering. These expressions are important in design of aerosol processes with population balance equations (PBE) and/or fluid dynamic simulations for material synthesis or minimization and even suppression of particle formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...