Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(3): 2083-7, 2001 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-11085977

RESUMO

The vacuole/lysosome serves an essential role in allowing cellular components to be degraded and recycled under starvation conditions. Vacuolar hydrolases are key proteins in this process. In Saccharyomces cerevisiae, some resident vacuolar hydrolases are delivered by the cytoplasm to vacuole targeting (Cvt) pathway, which shares mechanistic features with autophagy. Autophagy is a degradative pathway that is used to degrade and recycle cellular components under starvation conditions. Both the Cvt pathway and autophagy employ double-membrane cytosolic vesicles to deliver cargo to the vacuole. As a result, these pathways share a common terminal step, the degradation of subvacuolar vesicles. We have identified a protein, Cvt17, which is essential for this membrane lytic event. Cvt17 is a membrane glycoprotein that contains a motif conserved in esterases and lipases. The active-site serine of this motif is required for subvacuolar vesicle lysis. This is the first characterization of a putative lipase implicated in vacuolar function in yeast.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Metabolismo dos Lipídeos , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , Hidrólise , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Vacúolos/enzimologia
2.
Mol Biol Cell ; 10(5): 1337-51, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10233148

RESUMO

Proper functioning of organelles necessitates efficient protein targeting to the appropriate subcellular locations. For example, degradation in the fungal vacuole relies on an array of targeting mechanisms for both resident hydrolases and their substrates. The particular processes that are used vary depending on the available nutrients. Under starvation conditions, macroautophagy is the primary method by which bulk cytosol is sequestered into autophagic vesicles (autophagosomes) destined for this organelle. Molecular genetic, morphological, and biochemical evidence indicates that macroautophagy shares much of the same cellular machinery as a biosynthetic pathway for the delivery of the vacuolar hydrolase, aminopeptidase I, via the cytoplasm-to-vacuole targeting (Cvt) pathway. The machinery required in both pathways includes a novel protein modification system involving the conjugation of two autophagy proteins, Apg12p and Apg5p. The conjugation reaction was demonstrated to be dependent on Apg7p, which shares homology with the E1 family of ubiquitin-activating enzymes. In this study, we demonstrate that Apg7p functions at the sequestration step in the formation of Cvt vesicles and autophagosomes. The subcellular localization of Apg7p fused to green fluorescent protein (GFP) indicates that a subpopulation of Apg7pGFP becomes membrane associated in an Apg12p-dependent manner. Subcellular fractionation experiments also indicate that a portion of the Apg7p pool is pelletable under starvation conditions. Finally, we demonstrate that the Pichia pastoris homologue Gsa7p that is required for peroxisome degradation is functionally similar to Apg7p, indicating that this novel conjugation system may represent a general nonclassical targeting mechanism that is conserved across species.


Assuntos
Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microcorpos/metabolismo , Proteínas de Saccharomyces cerevisiae , Vacúolos/metabolismo , Aminopeptidases/metabolismo , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pichia/química , Pichia/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/fisiologia , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA