Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785269

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.


Assuntos
Comportamento Animal , Espinhas Dendríticas , Proteína 2 de Ligação a Metil-CpG , Fenótipo , Receptor trkB , Síndrome de Rett , Animais , Síndrome de Rett/patologia , Síndrome de Rett/tratamento farmacológico , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Feminino , Receptor trkB/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Comportamento Animal/efeitos dos fármacos , Ligantes , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Heterozigoto , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Benzamidas
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986936

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein-2 (MECP2), encoding a transcriptional regulator of many genes, including brain-derived neurotrophic factor (Bdnf). BDNF mRNA and protein levels are lower in RTT autopsy brains and in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of a brain penetrant, small molecule ligand of its TrkB receptors. Applied in vitro, LM22A-4 increased dendritic spine density in pyramidal neurons in cultured hippocampal slices from postnatal day (P) 7 male Mecp2 knockout (KO) mice as much as recombinant BDNF, and both effects were prevented by the TrkB receptor inhibitors K-252a and ANA-12. Consistent with its partial agonist activity, LM22A-4 did not affect spine density in CA1 pyramidal neurons in slice cultures from male wildtype (WT) mice, where typical BDNF levels outcompete its binding to TrkB. To identify neurons of known genotypes in the "mosaic" brain of female Mecp2 heterozygous (HET) mice, we treated 4-6-month-old female MeCP2-GFP WT and HET mice with peripheral injections of LM22A-4 for 4 weeks. Surprisingly, mutant neurons lacking MeCP2-GFP showed dendritic spine volumes comparable to that in WT controls, while MeCP2-GFP-expressing neurons showed larger spines, similar to the phenotype we described in symptomatic male Mecp2 KO mice where all neurons lack MeCP2. Consistent with this non-cell-autonomous mechanism, a 4-week systemic treatment with LM22A-4 had an effect only in MeCP2-GFP-expressing neurons in female Mecp2 HET mice, bringing dendritic spine volumes down to WT control levels, and without affecting spines of MeCP2-GFP-lacking neurons. At the behavioral level, we found that female Mecp2 HET mice engaged in aggressive behaviors significantly more than WT controls, which were reduced to WT levels by a 4-week systemic treatment with LM22A-4. Altogether, these data revealed differences in dendritic spine size and altered behaviors in Mecp2 HET mice, while providing support to the potential usefulness of BDNF-related therapeutic approaches such as the partial TrkB agonist LM22A-4.

3.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...