Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(20): 5323-5330, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38724016

RESUMO

We exploited 129Xe NMR to investigate xenon gas uptake and dynamics in a porous liquid formed by dissolving porous organic cages in a cavity-excluded solvent. Quantitative 129Xe NMR shows that when the amount of xenon added to the sample is lower than the amount of cages present (subsaturation), the porous liquid absorbs almost all xenon atoms from the gas phase, with 30% of the cages occupied with a Xe atom. A simple two-site exchange model enables an estimate of the chemical shift of 129Xe in the cages, which is in good agreement with the value provided by first-principles modeling. T2 relaxation times allow the determination of the exchange rate of Xe between the solvent and cage sites as well as the activation energies of the exchange. The 129Xe NMR analysis also enables determination of the free energy of confinement, and it shows that Xe binding is predominantly enthalpy-driven.

2.
Angew Chem Int Ed Engl ; 62(40): e202308150, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37493063

RESUMO

Permanent macropores (>50 nm) had not been reported in the liquid state until a recent report by Tao Li and co-workers describing a synthetic strategy to form a porous liquid with dual micro-macroporosity. This is prepared by producing hierarchically porous particles that are surface coated and fluidised by dispersion. Surface micropores enable permanent porosity by steric exclusion of the fluid phase. The material has a considerable water uptake capacity (27 % w/w) due to large (480 nm) unoccupied macropores. This also enables switching of thermal conductivity on uptake of water. These are new properties translated from porous solids to the liquid state.

3.
Chem Sci ; 13(18): 5042-5054, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655552

RESUMO

The development of microporosity in the liquid state is leading to an inherent change in the way we approach applications of functional porosity, potentially allowing access to new processes by exploiting the fluidity of these new materials. By engineering permanent porosity into a liquid, over the transient intermolecular porosity in all liquids, it is possible to design and form a porous liquid. Since the concept was proposed in 2007, and the first examples realised in 2015, the field has seen rapid advances among the types and numbers of porous liquids developed, our understanding of the structure and properties, as well as improvements in gas uptake and molecular separations. However, despite these recent advances, the field is still young, and with only a few applications reported to date, the potential that porous liquids have to transform the field of microporous materials remains largely untapped. In this review, we will explore the theory and conception of porous liquids and cover major advances in the area, key experimental characterisation techniques and computational approaches that have been employed to understand these systems, and summarise the investigated applications of porous liquids that have been presented to date. We also outline an emerging discovery workflow with recommendations for the characterisation required at each stage to both confirm permanent porosity and fully understand the physical properties of the porous liquid.

4.
Chem Sci ; 11(25): 6582-6589, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874520

RESUMO

The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded 'technical grade' mixture of CC3 and [3+5] species rendered the material porous.

5.
Angew Chem Int Ed Engl ; 59(19): 7362-7366, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31999036

RESUMO

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH4 -selective, which is understood using 129 Xe, 1 H, and pulsed-field gradient NMR spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...