Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 73: 350-361, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746836

RESUMO

The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism.


Assuntos
Cistina/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacologia , Bioensaio , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ornitina/metabolismo
2.
PLoS One ; 9(11): e112445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25380056

RESUMO

BACKGROUND: The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age. OBJECTIVES: To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment. METHODS: Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD. RESULTS: A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set. CONCLUSIONS: This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment recommendations.


Assuntos
Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/diagnóstico , Biomarcadores/sangue , Metabolômica/métodos , Transtorno do Espectro Autista/metabolismo , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Aprendizado de Máquina , Masculino , Espectrometria de Massas , Análise Multivariada , Medicina de Precisão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Birth Defects Res B Dev Reprod Toxicol ; 98(4): 343-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24123775

RESUMO

A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9-point dose-response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.


Assuntos
Bioensaio/métodos , Biomarcadores/metabolismo , Células-Tronco Embrionárias/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Humanos , Metabolômica , Modelos Biológicos , Gravidez , Teratogênicos/toxicidade
5.
Toxicol Sci ; 87(1): 277-84, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15933226

RESUMO

Genetic drift in animal populations has been a recognized concern for many years. Less understood is the potential for phenotypic "drift" or variation that is not related to any genetic change. Recently, stock Sprague-Dawley (Crl:CD(SD)) rats obtained from the Charles River Raleigh facility demonstrated a distinct endogenous urinary metabonomic profile that differed from historical control SD urine spectral profiles obtained over the past several years in our laboratory. In follow-up studies, the origin of the variant phenotype was narrowed down to animals of both sexes that were housed in one specific room (Room 9) in the Raleigh facility. It is likely that the two phenotypes are related to distinct populations of gut flora that particularly impact the metabolism of aromatic molecules. The most pronounced difference between the two phenotypes is the relative amounts of hippuric acid versus other aromatic acid metabolites of chlorogenic acid. Though both molecular species are present in either phenotype, the marked variation in levels of these molecules between the two phenotypes has led to the designation of high hippuric acid (HIP) and high chlorogenic acid metabolites (CA) phenotypes. Specific urinary components that distinguish the phenotypes have been thoroughly characterized by NMR spectroscopy with additional, limited characterization by LC-MS (high performance liquid chromatography coupled with mass spectrometry). Co-habitation of rats from the two phenotypes rapidly facilitated a switch of the CA phenotype to the historical Sprague-Dawley phenotype (HIP). The impact of these variant phenotypes on drug metabolism and long-term safety assessment studies (e.g., carcinogenicity bioassays) is unknown.


Assuntos
Ácido Clorogênico/metabolismo , Hipuratos/metabolismo , Ratos Sprague-Dawley/metabolismo , Animais , Bactérias/metabolismo , Feminino , Trato Gastrointestinal/microbiologia , Espectroscopia de Ressonância Magnética , Masculino , Fenótipo , Ratos
6.
J Pharm Biomed Anal ; 27(1-2): 271-84, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11682235

RESUMO

Methods for simultaneous liquid chromatography-radioactivity monitor (LC-RAM) metabolite profiling and LC-tandem mass spectrometry (MS/MS) characterization of metabolites are described. Profiling and characterization of metabolites from three drug candidates from different therapeutic areas were compared using in-line heterogeneous LC-RAM-MS/MS and homogeneous LC-RAM-MS/MS methods. Although comparison shows that simultaneous metabolite profiling and characterization can be achieved using either heterogeneous or homogeneous-LC-RAM-MS/MS systems, a homogeneous system has the advantage in the following aspects, (1) sensitivity; (2) ease of method transfer; (3) less peak broadening problems due to the drug or metabolites adhering to the RAM cell; (4) accuracy in quantitation of the metabolites; and (5) the ability to load larger volumes of unprocessed biological fluids. Furthermore, the study shows that some of the possible metabolites that do not ionize well with electrospray ionization (ESI) and eluded detection by heterogeneous-LC-RAM detection could be very easily detected and characterized using a homogeneous-LC-RAM-MS/MS system.


Assuntos
Amidinas/análise , Anticoagulantes/análise , Oxazinas/análise , Piperazinas/análise , Piridinas/análise , Monitoramento de Radiação/instrumentação , Amidinas/farmacocinética , Amidinas/urina , Animais , Radioisótopos de Carbono , Cromatografia Líquida/métodos , Antagonistas dos Receptores de Dopamina D2 , Antagonistas dos Receptores de Endotelina , Fezes/química , Masculino , Espectrometria de Massas/métodos , Estrutura Molecular , Oxazinas/farmacocinética , Oxazinas/urina , Piperazinas/farmacocinética , Piperazinas/urina , Piridinas/farmacocinética , Piridinas/urina , Ratos , Ratos Wistar , Receptor de Endotelina A , Receptores de Dopamina D4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...