Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6538-6544, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771703

RESUMO

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect. Upon electrical excitation, the system unequivocally shows polariton lasing from the topological defect using a carefully placed gold contact. Despite the presence of doping and electrical contacts, the polariton band structure clearly preserves its topological properties. At high excitation power the Mott density is exceeded, leading to highly efficient lasing in the weak coupling regime. This work is an important step toward applied topological lasers using vertical resonator microcavity structures.

2.
Nano Lett ; 23(3): 820-826, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36656001

RESUMO

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode. We provide an in-depth study of Purcell enhancement for this topological quantum light source and demonstrate its emission of nonclassical light on demand. Our approach is a promising step toward the application of topological cavities in quantum photonics.

3.
Science ; 373(6562): 1514-1517, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554782

RESUMO

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array. Our topological VCSEL array emits at a single frequency and displays interference, highlighting that the emitters are mutually coherent. Our experiments exemplify the power of topological transport of light: The light spends most of its time oscillating vertically, but the small in-plane coupling is sufficient to force the array of individual emitters to act as a single laser.

4.
Phys Rev Lett ; 121(25): 257402, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608796

RESUMO

Two-dimensional electronic materials such as graphene and transition metal dichalgenides feature unique electrical and optical properties due to the conspirative effect of band structure, orbital coupling, and crystal symmetry. Synthetic matter, as accomplished by artificial lattice arrangements of cold atoms, molecules, electron patterning, and optical cavities, has emerged to provide manifold intriguing frameworks to likewise realize such scenarios. Exciton polaritons have recently been added to the list of promising candidates for the emulation of system Hamiltonians on a semiconductor platform, offering versatile tools to engineer the potential landscape and to access the nonlinear electro-optical regime. In this work, we introduce an electronically driven square and honeycomb lattice of exciton polaritons, paving the way towards real world devices based on polariton lattices for on-chip applications. Our platform exhibits laserlike emission from high-symmetry points under direct current injection, hinting at the prospect of electrically driven polariton lasers with possibly topologically nontrivial properties.

5.
Phys Rev Lett ; 118(15): 157401, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452514

RESUMO

Solitons and vortices obtain widespread attention in different physical systems as they offer potential use in information storage, processing, and communication. In exciton-polariton condensates in semiconductor microcavities, solitons and vortices can be created optically. However, dark solitons are unstable and vortices cannot be spatially controlled. In the present work we demonstrate the existence of stable dark solitons and vortices under nonresonant incoherent excitation of a polariton condensate with a simple spatially periodic pump. In one dimension, we show that an additional coherent light pulse can be used to create or destroy a dark soliton in a controlled manner. In two dimensions we demonstrate that a coherent light beam can be used to move a vortex to a specific position on the lattice or be set into motion by simply switching the periodic pump structure from two-dimensional (lattice) to one-dimensional (stripes). Our theoretical results open up exciting possibilities for optical on-demand generation and control of dark solitons and vortices in polariton condensates.

6.
Opt Express ; 15(7): 4149-58, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19532658

RESUMO

We study light propagation in arrays of weakly coupled nonlinear cavities driven by an inclined holding beam.We show analytically that both discreteness and inclination of the driving field can dramatically change the conditions for modulational instability in discrete nonlinear systems. We find numerically the families of resting and moving dissipative solitons for an arbitrary inclination angle of the driving field, both in the discrete and a quasi-continuous limits. We analyze a crossover between resting and moving cavity solitons, and also observe novel features in the soliton collision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...