Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6673): 907-911, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995251

RESUMO

Strange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRh2Si2. When compared with conventional metals, shot noise in these nanowires is strongly suppressed. This suppression cannot be attributed to either electron-phonon or electron-electron interactions in a Fermi liquid, which suggests that the current is not carried by well-defined quasiparticles in the strange-metal regime that we probed. Our work sets the stage for similar studies of other strange metals.

3.
Nat Commun ; 13(1): 5729, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175415

RESUMO

It is becoming increasingly clear that breakthrough in quantum applications necessitates materials innovation. In high demand are conductors with robust topological states that can be manipulated at will. This is what we demonstrate in the present work. We discover that the pronounced topological response of a strongly correlated "Weyl-Kondo" semimetal can be genuinely manipulated-and ultimately fully suppressed-by magnetic fields. We understand this behavior as a Zeeman-driven motion of Weyl nodes in momentum space, up to the point where the nodes meet and annihilate in a topological quantum phase transition. The topologically trivial but correlated background remains unaffected across this transition, as is shown by our investigations up to much larger fields. Our work lays the ground for systematic explorations of electronic topology, and boosts the prospect for topological quantum devices.

4.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608457

RESUMO

Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau's order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal [Formula: see text] that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes-singularities of the Berry curvature-that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices.

5.
Dalton Trans ; 45(11): 4879-87, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26875687

RESUMO

The formation of two distinct derivative structures of Ti2Ni-type, interstitial Pd3Cu3B and substitutive Pd5Cu5B2, has been elucidated in Pd-Cu-B alloys from analysis of X-ray single crystal and powder diffraction data and supported by SEM. The metal atom arrangement in the new boride Pd3Cu3B (space group Fd3m, W3Fe3C-type structure, a = 1.1136(3) nm) follows the pattern of atom distribution in the CdNi-type structure. Pd5Cu5B2 (space group F(4)3m, a = 1.05273(5) nm) exhibits a non-centrosymmetric substitutive derivative of the Ti2Ni-type structure. The reduction of symmetry on passing from Ti2Ni-type structure to Pd5Cu5B2 corresponds to the loss of an inversion centre delivered by an ordered occupation of the Ni position (32e) by dissimilar atoms, Cu and B. In both structures, the boron atom centers Pd forming [BPd6] octahedra in Pd3Cu3B and [BPd6] trigonal prisms in Pd5Cu5B2. Neither a perceptible homogeneity range nor mutual solid solubility was observed for two compounds at 600 °C, while in as cast conditions Pd5Cu5B2 exhibits an extended homogeneity range formed by a partial substitution of Cu atoms (in 24f) by Pd (Pd5+xCu5-xB2, 0 ≤x≤ 1). Electrical resistivity measurements performed on Pd3Cu3B as well as on Pd-poor and Pd-rich termini of Pd5+xCu5-xB2 annealed at 600 °C and in as cast conditions respectively demonstrated the absence of any phase transitions for this compounds in the temperature region from 0.3 K to 300 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...