Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Immunol ; 67(5): 228-238, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892203

RESUMO

Magnetotactic bacteria (MTB) generate a membrane-enclosed subcellular compartment called magnetosome, which contains a biomineralized magnetite or greigite crystal, an inner membrane-derived lipid bilayer membrane, and a set of specifically targeted associated proteins. Magnetosomes are formed by a group of magnetosome-associated proteins encoded in a genomic region called magnetosome island. Magnetosomes are then arranged in a linear chain-like positioning, and the resulting magnetic dipole of the chain functions as a geomagnetic sensor for magneto-aerotaxis motility. Recent metagenomic analyses of environmental specimens shed light on the sizable phylogenetical diversity of uncultured MTB at the phylum level. These findings have led to a better understanding of the diversity and conservation of magnetosome-associated proteins. This review provides an overview of magnetosomes and magnetosome-associated proteins and introduces recent topics about this fascinating magnetic bacterial organelle.


Assuntos
Magnetossomos , Magnetossomos/química , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Proteínas de Bactérias/metabolismo , Bactérias/genética , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/metabolismo , Bactérias Gram-Negativas
2.
Environ Microbiol Rep ; 15(3): 181-187, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779255

RESUMO

Magnetotactic bacteria (MTB) ubiquitously inhabit the oxic-anoxic interface or anaerobic areas of aquatic environments. MTB biomineralize magnetite or greigite crystals and synthesize an organelle known as magnetosome. This intrinsic ability of MTB allows them to accumulate iron to levels 100-1000 times higher than those in non-magnetotactic bacteria (non-MTB). Therefore, MTB considerably contributes to the global iron cycle as primary iron suppliers in the aquatic environmental food chain. However, to the best of our knowledge, there have been no reports describing the effects of trophic interactions between MTB and their protist grazers on the iron distributions in MTB grazers and the extracellular milieu. Herein, we evaluated the effects of MTB grazing using a model species of protist (Tetrahymena pyriformis) and a model species of MTB (Magnetospirillum magneticum AMB-1). MTB-fed T. pyriformis exhibited a magnetic response and contained magnetite crystals in their vacuoles. Fluorescence imaging using a ferrous ion-specific fluorescent dye revealed that the cellular ferrous ion content was five times higher in MTB-fed T. pyriformis than in non-MTB grazers. Moreover, soluble iron concentrations in the spent media increased with time during MTB predation. This study provides experimental evidence to delineate the importance of trophic interactions of MTB on iron distributions.


Assuntos
Magnetossomos , Magnetospirillum , Óxido Ferroso-Férrico/análise , Magnetossomos/química , Ferro , Vacúolos
3.
Methods Mol Biol ; 2646: 133-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842112

RESUMO

The assessment of intracellular dynamics is crucial for understanding the function and formation process of bacterial organelle, just as it is for the inquisition of their eukaryotic counterparts. The methods for imaging magnetosome organelles in a magnetotactic bacterial cell using live-cell fluorescence imaging by highly inclined and laminated optical sheet (HILO) microscopy are presented in this chapter. Furthermore, we introduce methods for pH imaging in magnetosome lumen as an application of fluorescence magnetosome imaging.


Assuntos
Magnetossomos , Bactérias , Imagem Óptica , Proteínas de Bactérias
4.
Biosci Biotechnol Biochem ; 82(7): 1243-1251, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29557302

RESUMO

Magnetotactic bacteria synthesize uniform-sized and regularly shaped magnetic nanoparticles in their organelles termed magnetosomes. Homeostasis of the magnetosome lumen must be maintained for its role accomplishment. Here, we developed a method to estimate the pH of a single living cell of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 using a pH-sensitive fluorescent protein E2GFP. Using the pH measurement, we estimated that the cytoplasmic pH was approximately 7.6 and periplasmic pH was approximately 7.2. Moreover, we estimated pH in the magnetosome lumen and cytoplasmic surface using fusion proteins of E2GFP and magnetosome-associated proteins. The pH in the magnetosome lumen increased during the exponential growth phase when magnetotactic bacteria actively synthesize magnetite crystals, whereas pH at the magnetosome surface was not affected by the growth stage. This live-cell pH measurement method will help for understanding magnetosome pH homeostasis to reveal molecular mechanisms of magnetite biomineralization in the bacterial organelle.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Homeostase , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita , Microscopia de Fluorescência , Organelas/metabolismo , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única , Espectrometria de Fluorescência , Frações Subcelulares/metabolismo
5.
mBio ; 8(4)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790202

RESUMO

Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signal/noise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception.IMPORTANCE Half a century ago, bacterial cells were considered a simple "bag of enzymes"; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo Celular , Magnetossomos/metabolismo , Magnetospirillum/fisiologia , Imãs , Citoesqueleto de Actina/metabolismo , Actinas/química , Citoesqueleto/metabolismo , Fluorescência , Magnetossomos/ultraestrutura , Microscopia Eletrônica , Imagem com Lapso de Tempo
6.
FEMS Microbiol Lett ; 358(1): 21-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25048532

RESUMO

Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization.


Assuntos
Citocromos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/enzimologia , Magnetospirillum/metabolismo , Cristalização , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...