Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 15(2): 304-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22823007

RESUMO

Drought stress is a major constraint on cowpea productivity, since the crop is grown under warm conditions on sandy soils having low water-holding capacity. For enhanced performance of crops facing terminal drought stress, like cowpea, water-saving strategies are crucial. In this work, the growth and transpiration rate (TR) of 40 cowpea genotypes with contrasting response to terminal drought were measured under well-watered conditions across different vapour pressure deficits (VPD) to investigate whether tolerant and sensitive genotypes differ in their control of leaf water loss. A method is presented to indirectly assess TR through canopy temperature (CT) and the index of canopy conductance (Ig). Overall, plants developed larger leaf area under low than under high VPD, and there was a consistent trend of lower plant biomass in tolerant genotypes. Substantial differences were recorded among genotypes in TR response to VPD, with tolerant genotypes having significantly lower TR than sensitive ones, especially at times with the highest VPD. Genotypes differed in TR response to increasing VPD, with some tolerant genotypes exhibiting a clear VPD breakpoint at about 2.25 kPa, above which there was very little increase in TR. In contrast, sensitive genotypes presented a linear increase in TR as VPD increased, and the same pattern was found in some tolerant lines, but with a smaller slope. CT, estimated with thermal imagery, correlated well with TR and Ig and could therefore be used as proxy for TR. These results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance. The water-saving characteristics of some genotypes are hypothesised to leave more soil water for pod filling, which is crucial for terminal drought adaptation.


Assuntos
Adaptação Fisiológica , Secas , Fabaceae/crescimento & desenvolvimento , Transpiração Vegetal , Pressão de Vapor , Água/metabolismo , Meio Ambiente , Fabaceae/genética , Fabaceae/metabolismo , Variação Genética , Genótipo , Modelos Lineares , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Temperatura , Fatores de Tempo
2.
Heredity (Edinb) ; 109(1): 34-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22378357

RESUMO

Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.


Assuntos
Asparagus/genética , Genoma de Planta , Mapeamento Cromossômico/métodos , Genes de Plantas , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
3.
J Nematol ; 41(2): 120-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22661784

RESUMO

A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus.

4.
Genome ; 45(1): 175-88, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11908660

RESUMO

An improved genetic linkage map has been constructed for cowpea (Vigna unguiculata L. Walp.) based on the segregation of various molecular markers and biological resistance traits in a population of 94 recombinant inbred lines (RILs) derived from the cross between 'IT84S-2049' and '524B'. A set of 242 molecular markers, mostly amplified fragment length polymorphism (AFLP), linked to 17 biological resistance traits, resistance genes, and resistance gene analogs (RGAs) were scored for segregation within the parental and recombinant inbred lines. These data were used in conjunction with the 181 random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP, and biochemical markers previously mapped to construct an integrated linkage map for cowpea. The new genetic map of cowpea consists of 11 linkage groups (LGs) spanning a total of 2670 cM, with an average distance of 6.43 cM between markers. Astonishingly, a large, contiguous portion of LG1 that had been undetected in previous mapping work was discovered. This region, spanning about 580 cM, is composed entirely of AFLP markers (54 in total). In addition to the construction of a new map, molecular markers associated with various biological resistance and (or) tolerance traits, resistance genes, and RGAs were also placed on the map, including markers for resistance to Striga gesnerioides races 1 and 3, CPMV, CPSMV, B1CMV, SBMV, Fusarium wilt, and root-knot nematodes. These markers will be useful for the development of tools for marker-assisted selection in cowpea breeding, as well as for subsequent map-based cloning of the various resistance genes.


Assuntos
Mapeamento Cromossômico , Magnoliopsida/genética , Biomarcadores , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...