Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5055, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030289

RESUMO

Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais , Linfócitos T CD4-Positivos , Cloridrato de Fingolimode , Macaca mulatta , Carga Viral
2.
J Virol ; 96(7): e0169921, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293766

RESUMO

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Alcinos/farmacocinética , Alcinos/farmacologia , Alcinos/uso terapêutico , Animais , Antirretrovirais/farmacocinética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Macaca mulatta , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Latência Viral/efeitos dos fármacos , Replicação Viral
3.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34699383

RESUMO

Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.


Assuntos
Antirretrovirais/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Viremia/etiologia , Animais , Feminino , Macaca , Masculino , Viremia/patologia
4.
PLoS One ; 11(8): e0158149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505158

RESUMO

Infections with mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis (M. bovis) BCG, are a leading cause of morbidity and mortality for HIV-infected persons. In contrast to HIV, nonpathogenic SIV infections of sooty mangabeys are characterized by a lack of clinical disease including an absence of opportunistic infections. The goal of this study was to identify innate immune responses to M. bovis BCG maintained during nonpathogenic lentiviral infections through a comparison of functional responses during pathogenic HIV or nonpathogenic SIV infections. Monocytes were evaluated for their ability to express key anti-mycobacterial cytokines TNF-α and IL-12 following a six-hour ex vivo BCG exposure. While HIV-infection was associated with a decreased percentage of IL-12-producing monocytes, nonpathogenic SIV-infection was associated with an increased percentage of monocytes producing both cytokines. Gene expression analysis of PBMC following ex vivo BCG exposure identified differential expression of NK cell-related genes and several cytokines, including IFN-γ and IL-23, between HIV-infected and control subjects. In contrast, SIV-infected and uninfected-control mangabeys exhibited no significant differences in gene expression after BCG exposure. Finally, differential gene expression patterns were identified between species, with mangabeys exhibiting lower IL-6 and higher IL-17 in response to BCG when compared to humans. Overall, this comparison of immune responses to M. bovis BCG identified unique immune signatures (involving cytokines IL-12, TNF-α, IL-23, IL-17, and IL-6) that are altered during HIV, but maintained or increased during nonpathogenic SIV infections. These unique cytokine and transcriptome signatures provide insight into the differential immune responses to Mycobacteria during pathogenic HIV-infection that may be associated with an increased incidence of mycobacterial co-infections.


Assuntos
Citocinas/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Imunidade Inata , Mycobacterium bovis/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Animais , Cercocebus/virologia , Citocinas/biossíntese , Perfilação da Expressão Gênica , Infecções por HIV/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Especificidade da Espécie
5.
PLoS Pathog ; 10(3): e1003958, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24604066

RESUMO

Mother-to-infant transmission (MTIT) of HIV is a serious global health concern, with over 300,000 children newly infected in 2011. SIV infection of rhesus macaques (RMs) results in similar rates of MTIT to that of HIV in humans. In contrast, SIV infection of sooty mangabeys (SMs) rarely results in MTIT. The mechanisms underlying protection from MTIT in SMs are unknown. In this study we tested the hypotheses that breast milk factors and/or target cell availability dictate the rate of MTIT in RMs (transmitters) and SMs (non-transmitters). We measured viral loads (cell-free and cell-associated), levels of immune mediators, and the ability to inhibit SIV infection in vitro in milk obtained from lactating RMs and SMs. In addition, we assessed the levels of target cells (CD4+CCR5+ T cells) in gastrointestinal and lymphoid tissues, including those relevant to breastfeeding transmission, as well as peripheral blood from uninfected RM and SM infants. We found that frequently-transmitting RMs did not have higher levels of cell-free or cell-associated viral loads in milk compared to rarely-transmitting SMs. Milk from both RMs and SMs moderately inhibited in vitro SIV infection, and presence of the examined immune mediators in these two species did not readily explain the differential rates of transmission. Importantly, we found that the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant SMs as compared to infant RMs despite robust levels of CD4+ T cell proliferation in both species. The difference between the frequently-transmitting RMs and rarely-transmitting SMs was most pronounced in CD4+ memory T cells in the spleen, jejunum, and colon as well as in central and effector memory CD4+ T cells in the peripheral blood. We propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of MTIT in SIV-infected SMs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Cercocebus atys/imunologia , Macaca mulatta/imunologia , Leite/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Animais , Cercocebus atys/virologia , Feminino , Lactação , Macaca mulatta/virologia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...