Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960572

RESUMO

In the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in steel filaments through the application of the Eddy current principle. Permanent magnets are employed to generate a magnetic field with a high frequency surrounding a coil of sensors positioned at the filament's output end. The sensor's capacity to detect defects is validated through a meticulous rewinding process, followed by a thorough analysis involving scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Artificial defects were intentionally introduced into a sample, and their amplitudes were monitored to establish a threshold value. The amplitude signal of these created defect was identified at approximately 10% FSH, which corresponds to a crack depth of about 20 µm. In the experimental production of 182 samples covering 38 km, the defect ratio was notably high, standing at 26.37%. These defects appeared randomly along the length of the samples. The verification results underscore the exceptional precision achieved in the detection of micro surface defects within steel filaments. These defects were primarily characterized by longitudinal scratches and inclusions containing physical tungsten carbide.

2.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560138

RESUMO

In recent years, robotic minimally invasive surgery has transformed many types of surgical procedures and improved their outcomes. Implementing effective haptic feedback into a teleoperated robotic surgical system presents a significant challenge due to the trade-off between transparency and stability caused by system communication time delays. In this paper, these time delays are mitigated by implementing an environment estimation and force prediction methodology into an experimental robotic minimally invasive surgical system. At the slave, an exponentially weighted recursive least squares (EWRLS) algorithm estimates the respective parameters of the Kelvin-Voigt (KV) and Hunt-Crossley (HC) force models. The master then provides force feedback by interacting with a virtual environment via the estimated parameters. Palpation experiments were conducted with the slave in contact with polyurethane foam during human-in-the-loop teleoperation. The experimental results indicated that the prediction RMSE of error between predicted master force feedback and measured slave force was reduced to 0.076 N for the Hunt-Crossley virtual environment, compared to 0.356 N for the Kelvin-Voigt virtual environment and 0.560 N for the direct force feedback methodology. The results also demonstrated that the HC force model is well suited to provide accurate haptic feedback, particularly when there is a delay between the master and slave kinematics. Furthermore, a haptic feedback approach that incorporates environment estimation and force prediction improve transparency during teleoperation. In conclusion, the proposed bilateral master-slave robotic system has the potential to provide transparent and stable haptic feedback to the surgeon in surgical robotics procedures.


Assuntos
Robótica , Cirurgia Assistida por Computador , Humanos , Retroalimentação , Tecnologia Háptica , Robótica/métodos , Algoritmos , Cirurgia Assistida por Computador/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
3.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298180

RESUMO

With robotic-assisted minimally invasive surgery (RAMIS), patients and surgeons benefit from a reduced incision size and dexterous instruments. However, current robotic surgery platforms lack haptic feedback, which is an essential element of safe operation. Moreover, teleportation control challenges make complex surgical tasks like suturing more time-consuming than those that use manual tools. This paper presents a new force-sensing instrument that semi-automates the suturing task and facilitates teleoperated robotic manipulation. In order to generate the ideal needle insertion trajectory and pass the needle through its curvature, the end-effector mechanism has a rotating degree of freedom. Impedance control was used to provide sensory information about needle-tissue interaction forces to the operator using an indirect force estimation approach based on data-based models. The operator's motion commands were then regulated using a hyperplanar virtual fixture (VF) designed to maintain the desired distance between the end-effector and tissue surface while avoiding unwanted contact. To construct the geometry of the VF, an optoelectronic sensor-based approach was developed. Based on the experimental investigation of the hyperplane VF methodology, improved needle-tissue interaction force, manipulation accuracy, and task completion times were demonstrated. Finally, experimental validation of the trained force estimation models and the perceived interaction forces by the user was conducted using online data, demonstrating the potential of the developed approach in improving task performance.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Retroalimentação , Procedimentos Cirúrgicos Robóticos/métodos , Robótica/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Suturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...