Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6481-6493, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439349

RESUMO

Time-resolved fibre optic Raman distributed temperature sensing (DTS) measurements experience long measurement times due to a weak backscattered Raman signal inside optical fibres or limited detector count rates. Here, improvements to previous work based on individual detectors are demonstrated using a 512 pixel complementary-metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) line sensor array with integrated (on-chip) timing electronics. Multiplexed single photon counting increases count rate and decreases measurement time for practical applications. This allows temperature to be measured every 0.5 m with 0.7 °C accuracy and a 10 s measurement time using a 13.0 m optical fibre, performance over longer distance is also investigated.

2.
Opt Lett ; 48(17): 4578-4581, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656559

RESUMO

This Letter presents an experimental study comparing the photon rate and photon economy of pulse sampling fluorescence lifetime imaging (PS-FLIm) with the conventional time-correlated single photon counting (TCSPC) technique. We found that PS-FLIm has a significantly higher photon detection rate (200 MHz) compared with TCSPC (2-8 MHz) but lower photon economy (4-5 versus 1-1.3). The main factor contributing to the lower photon economy in PS-FLIm is laser pulse variability. These results demonstrate that PS-FLIm offers 25× faster imaging speed than TCSPC while maintaining room light rejection in clinical settings. This makes PS-FLIm a robust technique for clinical applications.

3.
IEEE Trans Biomed Eng ; 70(8): 2395-2403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37028307

RESUMO

Innovations in complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) technology has featured in the development of next-generation instruments for point-based time-resolved fluorescence spectroscopy (TRFS). These instruments provide hundreds of spectral channels, allowing the collection of fluorescence intensity and fluorescence lifetime information over a broad spectral range at a high spectral and temporal resolution. We present Multichannel Fluorescence Lifetime Estimation, MuFLE, an efficient computational approach to exploit the unique multi-channel spectroscopy data with an emphasis on simultaneous estimation of the emission spectra, and the respective spectral fluorescence lifetimes. In addition, we show that this approach can estimate the individual spectral characteristics of fluorophores from a mixed sample.


Assuntos
Corantes Fluorescentes , Semicondutores , Análise Espectral , Corantes Fluorescentes/química , Fótons , Óxidos/química
4.
IEEE Trans Biomed Eng ; 70(8): 2374-2383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37022914

RESUMO

Fiber-based Raman spectroscopy in the context of in vivo biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos
5.
J Biophotonics ; 16(2): e202200141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36062395

RESUMO

We present an endoscopic probe that combines three distinct optical fibre technologies including: A high-resolution imaging fibre for optical endomicroscopy, a multimode fibre for time-resolved fluorescence spectroscopy, and a hollow-core fibre with multimode signal collection cores for Raman spectroscopy. The three fibers are all enclosed within a 1.2 mm diameter clinical grade catheter with a 1.4 mm end cap. To demonstrate the probe's flexibility we provide data acquired with it in loops of radii down to 2 cm. We then use the probe in an anatomically accurate model of adult human airways, showing that it can be navigated to any part of the distal lung using a commercial bronchoscope. Finally, we present data acquired from fresh ex vivo human lung tissue. Our experiments show that this minimally invasive probe can deliver real-time optical biopsies from within the distal lung - simultaneously acquiring co-located high-resolution endomicroscopy and biochemical spectra.


Assuntos
Endoscopia , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Espectrometria de Fluorescência , Diagnóstico por Imagem , Biópsia
6.
J Biophotonics ; 14(10): e202000488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33855811

RESUMO

Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.


Assuntos
Corantes Fluorescentes , Análise Espectral Raman , Humanos , Dióxido de Silício
7.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060152

RESUMO

Solitary pulmonary nodules (SPNs) are a clinical challenge, given there is no single clinical sign or radiological feature that definitively identifies a benign from a malignant SPN. The early detection of lung cancer has a huge impact on survival outcome. Consequently, there is great interest in the prompt diagnosis, and treatment of malignant SPNs. Current diagnostic pathways involve endobronchial/transthoracic tissue biopsies or radiological surveillance, which can be associated with suboptimal diagnostic yield, healthcare costs and patient anxiety. Cutting-edge technologies are needed to disrupt and improve, existing care pathways. Optical fibre-based techniques, which can be delivered via the working channel of a bronchoscope or via transthoracic needle, may deliver advanced diagnostic capabilities in patients with SPNs. Optical endomicroscopy, an autofluorescence-based imaging technique, demonstrates abnormal alveolar structure in SPNs in vivo Alternative optical fingerprinting approaches, such as time-resolved fluorescence spectroscopy and fluorescence-lifetime imaging microscopy, have shown promise in discriminating lung cancer from surrounding healthy tissue. Whilst fibre-based Raman spectroscopy has enabled real-time characterisation of SPNs in vivo Fibre-based technologies have the potential to enable in situ characterisation and real-time microscopic imaging of SPNs, which could aid immediate treatment decisions in patients with SPNs. This review discusses advances in current imaging modalities for evaluating SPNs, including computed tomography (CT) and positron emission tomography-CT. It explores the emergence of optical fibre-based technologies, and discusses their potential role in patients with SPNs and suspected lung cancer.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Fibras Ópticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
8.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121191

RESUMO

Numerous optodes, with fluorophores as the chemical sensing element and optical fibres for light delivery and collection, have been fabricated for minimally invasive endoscopic measurements of key physiological parameters such as pH. These flexible miniaturised optodes have typically attempted to maximize signal-to-noise through the application of high concentrations of fluorophores. We show that high-density attachment of carboxyfluorescein onto silica microspheres, the sensing elements, results in fluorescence energy transfer, manifesting as reduced fluorescence intensity and lifetime in addition to spectral changes. We demonstrate that the change in fluorescence intensity of carboxyfluorescein with pH in this "high-density" regime is opposite to that normally observed, with complex variations in fluorescent lifetime across the emission spectra of coupled fluorophores. Improved understanding of such highly loaded sensor beads is important because it leads to large increases in photostability and will aid the development of compact fibre probes, suitable for clinical applications. The time-resolved spectral measurement techniques presented here can be further applied to similar studies of other optodes.

9.
Biomed Opt Express ; 11(4): 1864-1875, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341853

RESUMO

Infectious diseases are the leading cause of morbidity and mortality in low and middle income countries (LMICs). Rapid diagnosis of infections in LMICs presents many challenges, especially in rural areas where access to health care, including diagnostics, is poor. Microscopy is one of the most commonly used platforms to diagnose bacterial infections on clinical samples. Fluorescence microscopy has high sensitivity and specificity but to date is mostly performed within a laboratory setting due to the high-cost, low portability and highly specialist nature of equipment. Point-of-care diagnostics could offer a solution to the challenge of infection diagnosis in LMICs. In this paper we present frugal, easy to manufacture, doped polydimethylsiloxane filtering optical lenses that can be integrated into smartphone microscopes for immediate detection of fluorescently labelled bacteria. This provides a breakthrough technology platform for point-of-care diagnostics.

10.
Sensors (Basel) ; 20(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936827

RESUMO

This paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact. With the aim of improving lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway. The activity comprises an inexpensive educational tool (<$70) adapted from a clinical optical endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created by high school science teachers and researchers in a collaborative way that can be implemented into any engagement development process.


Assuntos
Técnicas Biossensoriais , Comportamento Cooperativo , Fibras Ópticas , Pesquisa Biomédica , Humanos , Pneumopatias/diagnóstico , Microscopia , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...