Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
2.
Chem Sci ; 15(8): 2731-2744, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404371

RESUMO

Vaccines have saved countless lives by preventing and even irradicating infectious diseases. Commonly used subunit vaccines comprising one or multiple recombinant proteins isolated from a pathogen demonstrate a better safety profile than live or attenuated vaccines. However, the immunogenicity of these vaccines is weak, and therefore, subunit vaccines require a series of doses to achieve sufficient immunity against the pathogen. Here, we show that the biomimetic mineralization of the inert model antigen, ovalbumin (OVA), in zeolitic imidazolate framework-8 (ZIF-8) significantly improves the humoral immune response over three bolus doses of OVA (OVA 3×). Encapsulation of OVA in ZIF-8 (OVA@ZIF) demonstrated higher serum antibody titers against OVA than OVA 3×. OVA@ZIF vaccinated mice displayed higher populations of germinal center (GC) B cells and IgG1+ GC B cells as opposed to OVA 3×, indicative of class-switching recombination. We show that the mechanism of this phenomenon is at least partly owed to the metalloimmunological effects of the zinc metal as well as the sustained release of OVA from the ZIF-8 composite. The system acts as an antigen reservoir for antigen-presenting cells to traffic into the draining lymph node, enhancing the humoral response. Lastly, our model system OVA@ZIF is produced quickly at the gram scale in a laboratory setting, sufficient for up to 20 000 vaccine doses.

3.
Chem Sci ; 14(21): 5774-5782, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265713

RESUMO

Zeolitic imidazolate framework-8 (ZIF-8) is becoming popular in research for its potential in antigen protection and for providing a thermally stable, slow-release platform. While papers applying this material for immunological applications are aplenty in the literature, studies that explore the biosafety of ZIF-8 in mammals-especially when administered intranasally-are not well represented. We checked the body clearance of uncoated and ZIF-8-coated liposomes and observed that the release slowed as ZIF-8 is easily degraded by mucosal fluid in the nasal cavity. We delivered varying doses of ZIF-8, checked its short- and long-term effects on diagnostic proteins found in blood serum, and found no noticeable differences from the saline control group. We also studied their lung diffusing capacity and tissue morphology; neither showed significant changes in morphology or function.

4.
J Mater Chem B ; 11(20): 4445-4452, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37144595

RESUMO

Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qß, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid. It is possible to usurp the native way infectious Qß self-assembles to encapsidate its RNA to place enzymes inside the VLP's lumen as a protease-resistant cage. Further, using RNA templates that mimic the natural self-assembly of the native capsid, fluorescent proteins (FPs) have been placed inside VLPs in a "one pot" expression system. Autofluorescence in tissues can lead to misinterpretation of results and unreliable science, so we created a single-pot expression system that uses the fluorescent protein smURFP, which avoids autofluorescence and has spectral properties compatible with standard commercial filter sets on confocal microscopes. In this work, we were able to simplify the existing "one-pot" expression system while creating high-yielding fluorescent VLP nanoparticles that could easily be imaged inside lung epithelial tissue.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , RNA Viral
5.
ACS Nano ; 17(8): 7797-7805, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36884260

RESUMO

Plasmonic gold nanostructures are a prevalent tool in modern hypersensitive analytical techniques such as photoablation, bioimaging, and biosensing. Recent studies have shown that gold nanostructures generate transient nanobubbles through localized heating and have been found in various biomedical applications. However, the current method of plasmonic nanoparticle cavitation events has several disadvantages, specifically including small metal nanostructures (≤10 nm) which lack size control, tuneability, and tissue localization by use of ultrashort pulses (ns, ps) and high-energy lasers which can result in tissue and cellular damage. This research investigates a method to immobilize sub-10 nm AuNPs (3.5 and 5 nm) onto a chemically modified thiol-rich surface of Qß virus-like particles. These findings demonstrate that the multivalent display of sub-10 nm gold nanoparticles (AuNPs) caused a profound and disproportionate increase in photocavitation by upward of 5-7-fold and significantly lowered the laser fluency by 4-fold when compared to individual sub-10 nm AuNPs. Furthermore, computational modeling showed that the cooling time of QßAuNP scaffolds is significantly extended than that of individual AuNPs, proving greater control of laser fluency and nanobubble generation as seen in the experimental data. Ultimately, these findings showed how QßAuNP composites are more effective at nanobubble generation than current methods of plasmonic nanoparticle cavitation.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Lasers , Nanoestruturas/química
6.
ACS Nano ; 15(11): 17426-17438, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34546723

RESUMO

The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.


Assuntos
Infecções Bacterianas , Estruturas Metalorgânicas , Vacinas , Camundongos , Animais , Imunidade Humoral , Escherichia coli , Vacinação/métodos , Antígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...