Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(21): 5531-5543, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201458

RESUMO

Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) is an emerging technology. In this work, we have developed a novel SC-ICP-MS method to quantify metal ions in individual cells of a toxic cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), without complicated post-dosing sample preparation, and applied this method to study the treatment effectiveness of copper-based algaecides (cupric sulfate and EarthTec®) on the toxic algae M. aeruginosa. The developed SC-ICP-MS method uses new intrinsic metal element magnesium to determine real transport efficiency and cell concentration. The cell viability and microcystin-LR release by algaecide treatment were studied by flow cytometry and ultra-fast liquid chromatography-tandem mass spectrometry, respectively. The results showed that this novel method was very rapid, highly sensitive (detection limits of intracellular copper and magnesium were 65 ag/cell and 98 ag/cell, respectively), and reproducible (relative standard deviation within 12%). The algaecide effectiveness study further demonstrated that copper in the forms of cupric sulfate and copper-based algaecide EarthTec® successfully diminished M. aeruginosa populations. The higher the copper concentration used to treat the cells, the faster the speeds of copper uptake and cell lysis in the copper concentrations ranged from 0 to 200 µg/L of copper-based algaecide. The cells exhibit obvious heterogeneity in copper uptake. The result suggests that M. aeruginosa cells uptake and cumulate copper followed by cellular lysis and microcystin-LR release. These novel results indicated that though the copper-based algaecides could control this type of harmful algal bloom, further treatment to remove the released algal toxin from the treated water would be needed. Graphical abstract.


Assuntos
Cobre/química , Herbicidas/farmacologia , Microcystis/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cobre/análise , Cobre/metabolismo , Citometria de Fluxo , Herbicidas/análise , Herbicidas/química , Limite de Detecção , Reprodutibilidade dos Testes
2.
J Environ Sci (China) ; 64: 82-91, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478664

RESUMO

When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.


Assuntos
Amônia/análise , Nitrosaminas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos de Alúmen , Amônia/química , Carvão Vegetal/química , Dimetilnitrosamina , Desinfecção , Água Potável , Nitrosaminas/química , Poluentes Químicos da Água/química , Zeolitas/química
3.
Chemosphere ; 195: 531-541, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277033

RESUMO

In this study, aluminum sulfate, ferric sulfate, ferric chloride, and poly(diallyldimethylammonium chloride) (pDADMAC) coagulation removal of citrate-stabilized silver and gold nanoparticles (NPs) and uncoated titanium dioxide, cerium dioxide, and zinc oxide NPs was investigated using a single particle (SP) ICP-MS direct monitoring technique. Zone 2 (charge neutralization) coagulation was performed in river water and more commonly used Zone 4 (sweep floc) coagulation was performed in both river and lake water with environmentally relevant concentrations of selected NPs added. SP-ICP-MS was used to detect NP and dissolved species, characterize the size distribution, and quantify particle concentration as well as dissolved species before and after treatments. Other parameters including pH, dissolved organic carbon, turbidity, and UV254 absorbance were monitored to characterize treatment efficiency. Charge neutralization (Zone 2) coagulation resulted in 48-85% removal of citrate-stabilized NPs and 90-99% removal of uncoated NPs from river water. Sweep floc (Zone 4) coagulation in river water resulted in 36-94% removal of citrate-stabilized NPs and 91-99% removal of uncoated NPs both with and without polymer addition. Zone 4 coagulation conditions in lake water resulted in 77-98% removal of citrate-stabilized NPs and 59-96% removal of uncoated NPs without polymer. These results indicate that NP removal depends on NP surface and stability, the nature of the source water, and the coagulant type and approach.


Assuntos
Compostos de Alúmen/química , Cloretos/química , Compostos Férricos/química , Água Doce/química , Nanopartículas Metálicas/análise , Cério , Floculação , Ouro , Espectrometria de Massas , Nanopartículas Metálicas/química , Prata , Titânio , Poluentes Químicos da Água/análise , Óxido de Zinco
4.
Chemosphere ; 189: 349-356, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942261

RESUMO

Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H2O2) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H2O2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H2O2, no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H2O2, low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment.


Assuntos
Ácido Acético/análise , Trialometanos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cloro/química , Desinfetantes/química , Desinfecção/métodos , Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Hidrocarbonetos Iodados , Peróxido de Hidrogênio/análise , Iodetos , Modelos Químicos , Ácido Peracético/análise
5.
Chemosphere ; 181: 562-568, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28463731

RESUMO

In this research, the release and degradation of intracellular microcystin-LR (MC-LR) due to oxidation of Microcystis aeruginosa (M. aeruginosa) was examined kinetically. Brief exposure to free chlorine with no measureable oxidant exposure was demonstrated to be sufficient to induce rapid release of intracellular MC-LR from M. aeruginosa. Thus, in a water treatment plant, there is currently no level of prechlorination that can be assumed to be safe, since very low preoxidation prior to filtration and no measureable free chlorine residual may still observe the release and buildup of extracellular MC-LR. Higher chlorine dosages resulting in a measureable exposure or CT (concentration times contact time) cause more rapid release and oxidation of the intracellular toxins. Further, the rate of release of MC-LR with intermediate oxidant dosages were shown to be initially rapid, but then slowed to a lower release rate due to an as yet undetermined mechanism. While free chlorine was reactive with the extracellular MC-LR, the monochloramine resulting from the consumption of the free chlorine by ammonia was not. Consideration of the ammonia concentration and the chlorine dosage relative to the chlorination breakpoint dosages is important for utilities assessing the impact of prechlorination of water containing cyanobacteria. MC-LR, once released, was rapidly oxidized by permanganate resulting in only negligible buildup of extracellular toxins.


Assuntos
Microcistinas/metabolismo , Microcystis/metabolismo , Oxidantes/metabolismo , Cloro/farmacologia , Cianobactérias , Halogenação , Compostos de Manganês/farmacologia , Toxinas Marinhas , Oxidantes/farmacologia , Oxirredução , Óxidos/farmacologia , Microbiologia da Água , Purificação da Água/métodos
6.
Anal Bioanal Chem ; 408(24): 6613-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27422643

RESUMO

Haloacetic acids (HAAs), which include chloroacetic acids, bromoacetic acids, and emerging iodoacetic acids, are toxic water disinfection byproducts. General screening methodology is lacking for simultaneously monitoring chloro-, bromo-, and iodoacetic acids. In this study, a rapid and sensitive high-performance ion chromatography-tandem mass spectrometry method for simultaneous determination of chloro-, bromo-, and iodo- acetic acids and related halogenated contaminants including bromate, bromide, iodate, and iodide was developed to directly analyze water samples after filtration, eliminating the need for preconcentration, and chemical derivatization. The resulting method was validated in both untreated and treated water matrices including tap water, bottled water, swimming pool water, and both source water and drinking water from a drinking water treatment facility to demonstrate application potential. Satisfactory accuracies and precisions were obtained for all types of tested samples. The detection limits of this newly developed method were lower or comparable with similar techniques without the need for extensive sample treatment requirement and it includes all HAAs and other halogenated compounds. This provides a powerful methodology to water facilities for routine water quality monitoring and related water research, especially for the emerging iodoacetic acids. Graphical abstract High performance ion chromatography-tandem mass spectrometry method for detection of haloacetic acids in water.

7.
Anal Bioanal Chem ; 408(19): 5137-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26960902

RESUMO

Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.


Assuntos
Cério/análise , Água Potável/química , Nanopartículas Metálicas/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco/análise , Água Potável/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Chemosphere ; 144: 148-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26347937

RESUMO

One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Prata/análise , Titânio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos de Alúmen/química , Compostos de Cálcio/química , Carbono/química , Desinfecção , Água Potável/análise , Filtração , Floculação , Espectrometria de Massas/métodos , Óxidos/química , Rios/química , Abrandamento da Água
9.
Environ Sci Pollut Res Int ; 22(11): 8594-602, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25561263

RESUMO

Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 µg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.


Assuntos
Bromatos/análise , Água Potável/química , Percloratos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Bromatos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Missouri , Espectrometria de Massas em Tandem/métodos , Difração de Raios X
10.
Talanta ; 131: 736-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281166

RESUMO

N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 µg/L to 1 µg/L except EMA (5 µg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 µg/L.


Assuntos
Aminas/análise , Cromatografia Líquida/métodos , Nitrosaminas/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Aminas/toxicidade , Desinfecção/métodos , Água Potável , Nitrosaminas/toxicidade , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...