Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 22(4): 1177-1192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318643

RESUMO

Cell migration plays a vital role in numerous processes such as development, wound healing, or cancer. It is well known that numerous complex mechanisms are involved in cell migration. However, so far it remains poorly understood what are the key mechanisms required to produce the main characteristics of this behavior. The reason is a methodological one. In experimental studies, specific factors and mechanisms can be promoted or inhibited. However, while doing so, there can always be others in the background which play key roles but which have simply remained unattended so far. This makes it very difficult to validate any hypothesis about a minimal set of factors and mechanisms required to produce cell migration. To overcome this natural limitation of experimental studies, we developed a computational model where cells and extracellular matrix fibers are represented by discrete mechanical objects on the micrometer scale. In this model, we had exact control of the mechanisms by which cells and matrix fibers interacted with each other. This enabled us to identify the key mechanisms required to produce physiologically realistic cell migration (including advanced phenomena such as durotaxis and a biphasic relation between migration efficiency and matrix stiffness). We found that two main mechanisms are required to this end: a catch-slip bond of individual integrins and cytoskeletal actin-myosin contraction. Notably, more advanced phenomena such as cell polarization or details of mechanosensing were not necessary to qualitatively reproduce the main characteristics of cell migration observed in experiments.


Assuntos
Actinas , Integrinas , Movimento Celular , Matriz Extracelular/fisiologia , Citoesqueleto
2.
Acta Biomater ; 134: 348-356, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332102

RESUMO

Cells within living soft biological tissues seem to promote the maintenance of a mechanical state within a defined range near a so-called set-point. This mechanobiological process is often referred to as mechanical homeostasis. During this process, cells interact with the fibers of the surrounding extracellular matrix (ECM). It remains poorly understood, however, what individual cells actually regulate during these interactions, and how these micromechanical regulations are translated to the tissue-level to lead to what we observe as biomaterial properties. Herein, we examine this question by a combination of experiments, theoretical analysis, and computational modeling. We demonstrate that on short time scales (hours) - during which deposition and degradation of ECM fibers can largely be neglected - cells appear to not regulate the stress / strain in the ECM or their own shape, but rather only the contractile forces that they exert on the surrounding ECM. STATEMENT OF SIGNIFICANCE: Cells in soft biological tissues sense and regulate the mechanical state of the extracellular matrix to ensure structural integrity and functionality. This so-called mechanical homeostasis plays an important role in the natural history of various diseases such as aneurysms in the cardiovascular system or cancer. Yet, it remains poorly understood to date which target quantity cells regulate on the mircroscale and how it translates to the macroscale. In this paper, we combine experiments, computer simulations, and theoretical analysis to compare different hypotheses about this target quantity. This allows us to identify a likely candidate for it at least on short time scales and in the simplified environment of tissue equivalents.


Assuntos
Fenômenos Fisiológicos Celulares , Homeostase , Matriz Extracelular , Humanos
3.
Biomech Model Mechanobiol ; 20(5): 1851-1870, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34173132

RESUMO

Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.


Assuntos
Matriz Extracelular/fisiologia , Citoesqueleto de Actina/metabolismo , Fenômenos Biomecânicos , Comunicação Celular , Colágeno/química , Simulação por Computador , Citoesqueleto/metabolismo , Elastina/química , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Homeostase , Humanos , Integrinas , Modelos Biológicos , Linguagens de Programação , Processos Estocásticos , Estresse Mecânico
4.
Biomech Model Mechanobiol ; 20(3): 833-850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683513

RESUMO

There is substantial evidence that growth and remodeling of load bearing soft biological tissues is to a large extent controlled by mechanical factors. Mechanical homeostasis, which describes the natural tendency of such tissues to establish, maintain, or restore a preferred mechanical state, is thought to be one mechanism by which such control is achieved across multiple scales. Yet, many questions remain regarding what promotes or prevents homeostasis. Tissue equivalents, such as collagen gels seeded with living cells, have become an important tool to address these open questions under well-defined, though limited, conditions. This article briefly reviews the current state of research in this area. It summarizes, categorizes, and compares experimental observations from the literature that focus on the development of tension in tissue equivalents. It focuses primarily on uniaxial and biaxial experimental studies, which are well-suited for quantifying interactions between mechanics and biology. The article concludes with a brief discussion of key questions for future research in this field.


Assuntos
Homeostase , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Colágeno/química , Matriz Extracelular/metabolismo , Fibroblastos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...