Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5005, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973339

RESUMO

Medicinal plants are considered an alternative therapy for diabetes mellitus as they regulate glucose levels. Moreover, a variety of plants offer a rich source of bioactive compounds that have potent pharmacological effects without any negative side effects. The present study aimed to clarify the effects of Arabic gum/Gum Acacia (GA) on the biochemical, histopathological, and immunohistochemical changes observed in diabetic rats. Further, the anti-inflammatory activity of GA in response to diabetes, through inflammatory mediators analysis. Male rats were divided into four groups: untreated control, diabetic, Arabic gum-treated, and Arabic gum-treated diabetic rats. Diabetes was induced using alloxan. Animals were sacrificed after 7 and 21 days of treatment with Arabic gum. Body weight, blood and pancreas tissue samples were collected for analysis. Alloxan injection significantly decreased body weight, increased glucose levels, decreased insulin levels, and caused depletion of islets of Langerhans and ß-cell damage in the pancreas. Arabic gum treatment of diabetic rats significantly increased body weight, decreased serum glucose levels, increased insulin levels, exerts anti-inflammatory effect, and improved the pancreas tissue structure. Arabic gum has beneficial pharmacological effects in diabetic rats; therefore, it might be employed as diabetic therapy to reduce the hyperglycemic damage and may be applicable for many autoimmune and inflammatory diseases treatment. Further, the new bioactive substances, such as medications made from plants, have larger safety margins, and can be used for a longer period of time.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Ratos , Animais , Aloxano , Diabetes Mellitus Experimental/patologia , Anti-Inflamatórios/efeitos adversos , Glucose/efeitos adversos , Peso Corporal , Insulinas/uso terapêutico , Glicemia
2.
Pak J Biol Sci ; 23(1): 92-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31930887

RESUMO

BACKGROUND AND OBJECTIVES: The damaging effects of ionizing radiation lead to cell death. The present study was performed to assess the possible ameliorating effects of bone marrow transplantation (BMT) on the histopathological and histochemical changes in the kidney tissue of γ-irradiated pregnant rats and their fetuses. MATERIALS AND METHODS: Pregnant rats were divided into 5 sets (6 females in each set): Group C (untreated pregnant rats), group R7 (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy), group R7+BM (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy then injected by freshly BMT (75×106±5 cells) intra peritoneally after 1 h of irradiation, group R14 (pregnant rats exposed to 2Gy of γ-rays on the 14th day of pregnancy), group R14+BM (pregnant rats exposed to 2Gy γ-rays on the 14th day of pregnancy and after 1 h received 1 dose of BMT). All pregnant rats were sacrificed on the 20th day of pregnancy and kidney samples of pregnant rats and their fetuses were removed for histopathological and histochemical studies. RESULTS: Gamma rays caused many histological and histochemical deviations in the kidney tissue of mothers and their fetuses on day 7 or 14 of gestation, but bone marrow transplantation highly improved the damage were occurred due to γ-rays. CONCLUSION: Bone marrow transplantation has the ability to decrease the injury of gamma rays.


Assuntos
Raios gama , Animais , Medula Óssea , Transplante de Medula Óssea , Feminino , Rim , Masculino , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...