Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(8): 1228-1233, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413810

RESUMO

GSK2798745, a clinical candidate, was identified as an inhibitor of the transient receptor potential vanilloid 4 (TRPV4) ion channel for the treatment of pulmonary edema associated with congestive heart failure. We discuss the lead optimization of this novel spirocarbamate series and specifically focus on our strategies and solutions for achieving desirable potency, rat pharmacokinetics, and physicochemical properties. We highlight the use of conformational bias to deliver potency and optimization of volume of distribution and unbound clearance to enable desirable in vivo mean residence times.

2.
ACS Med Chem Lett ; 10(7): 1081-1085, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31312412

RESUMO

Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) is a key mediator of innate immunity. IRAK4 overactivation is linked with several autoimmune diseases. To date, many IRAK4 inhibitors have been developed to block the protein's kinase activity with the most advanced reaching Phase II clinical trials. Nevertheless, several reports suggest kinase activity is not disease-relevant in certain cell types, so removing scaffolding signaling in addition to IRAK4 kinase activity may offer a better therapeutic outcome. Herein, we describe the design and synthesis of an IRAK4 Proteolysis Targeted Chimera (PROTAC). We show that IRAK4 degradation induced by compound 9 leads to the inhibition of multiple cytokines in PBMCs. However, in IL-1ß stimulated human dermal fibroblasts, inhibition of IL-6 and TNF-α release was not observed despite IRAK4 degradation. Nonetheless, the possibility of targeting both IRAK4 kinase and scaffolding function could potentially lead to new therapeutic opportunities to treat autoimmune, inflammatory, and oncological diseases.

3.
Neurogastroenterol Motil ; 31(4): e13479, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311722

RESUMO

BACKGROUND: The expression of RET in the developing enteric nervous system (ENS) suggests that RET may contribute to adult intestinal function. ENS cholinergic nerves play a critical role in the control of colonic function through the release of acetylcholine (ACh). In the current study, we hypothesized that a RET-mediated mechanism may regulate colonic ion transport and motility through modulation of cholinergic nerves. METHODS: The effect of RET inhibition on active ion transport was assessed electrophysiologically in rat colonic tissue mounted in Ussing chambers via measurements of short circuit current (Isc) upon electrical field stimulation (EFS) or pharmacologically with cholinergic agonists utilizing a gastrointestinal (GI)-restricted RET inhibitor. We assessed the effect of the RET inhibitor on propulsive motility via quantification of fecal pellet output (FPO) induced by the acetylcholinesterase inhibitor neostigmine. KEY RESULTS: We found that enteric ganglia co-expressed RET and choline acetyltransferase (ChAT) transcripts. In vitro, the RET kinase inhibitor GSK3179106 attenuated the mean increase in Isc induced by either EFS or carbachol but not bethanechol. In vivo, GSK3179106 significantly reduced the prokinetic effect of neostigmine. CONCLUSION AND INFERENCES: Our findings provide evidence that RET-mediated mechanisms regulate colonic function by maintaining cholinergic neuronal function and enabling ACh-evoked chloride secretion and motility. We suggest that modulating the cholinergic control of the colon via a RET inhibitor may represent a novel target for the treatment of intestinal disorders associated with increased secretion and accelerated GI transit such as irritable bowel syndrome with diarrhea (IBS-D).


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Colo/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Animais , Colina O-Acetiltransferase/metabolismo , Agonistas Colinérgicos/farmacologia , Neurônios Colinérgicos/metabolismo , Colo/metabolismo , Defecação/efeitos dos fármacos , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Trânsito Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
4.
J Pharmacol Exp Ther ; 368(2): 299-307, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30413627

RESUMO

Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS. Here, we aimed to investigate the therapeutic potential of inhibiting the receptor of glial cell line-derived neurotrophic factor, rearranged during transfection (RET), in experimental models of inflammation and stress-induced visceral hypersensitivity resembling IBS sequelae. In RET-cyan fluorescent protein [(CFP) RetCFP/+] mice, thoracic and lumbosacral dorsal root ganglia were shown to express RET, which colocalized with calcitonin gene-related peptide. To understand the role of RET in visceral nociception, we employed GSK3179106 as a potent, selective, and gut-restricted RET kinase inhibitor. Colonic hyperalgesia, quantified as exaggerated visceromotor response to graded pressures (0-60 mm Hg) of isobaric colorectal distension (CRD), was produced in multiple rat models induced 1) by colonic irritation, 2) following acute colonic inflammation, 3) by adulthood stress, and 4) by early life stress. In all the rat models, RET inhibition with GSK3179106 attenuated the number of abdominal contractions induced by CRD. Our findings identify a role for RET in visceral nociception. Inhibition of RET kinase with a potent, selective, and gut-restricted small molecule may represent a novel therapeutic strategy for the treatment of IBS through the attenuation of post-inflammatory and stress-induced visceral hypersensitivity.


Assuntos
Colo/enzimologia , Modelos Animais de Doenças , Síndrome do Intestino Irritável/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Feminino , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
5.
ACS Med Chem Lett ; 9(7): 623-628, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034590

RESUMO

Abdominal pain and abnormal bowel habits represent major symptoms for irritable bowel syndrome (IBS) patients that are not adequately managed. Although the etiology of IBS is not completely understood, many of the functions of the gastrointestinal (GI) tract are regulated by the enteric nervous system (ENS). Inflammation or stress-induced expression of growth factors or cytokines may lead to hyperinnervation of visceral afferent neurons in GI tract and contribute to the pathophysiology of IBS. Rearranged during transfection (RET) is a neuronal growth factor receptor tyrosine kinase critical for the development of the ENS as exemplified by Hirschsprung patients who carry RET loss-of-function mutations and lack normal colonic innervation leading to colonic obstruction. Similarly, RET signaling in the adult ENS maintains neuronal function by contributing to synaptic formation, signal transmission, and neuronal plasticity. Inhibition of RET in the ENS represents a novel therapeutic strategy for the normalization of neuronal function and the symptoms of IBS patients. Herein, we describe our screening effort and subsequent structure-activity relationships (SARs) in optimizing potency, selectivity, and mutagenicity of the series, which led to the discovery of a first-in-class, gut-restricted RET kinase inhibitor, 2-(4-(4-ethoxy-6-oxo-1,6-dihydropyridin-3-yl)-2-fluorophenyl)-N-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)acetamide (15, GSK3179106), as a clinical candidate for the treatment of IBS. GSK3179106 is a potent, selective, and gut-restricted pyridone hinge binder small molecule RET kinase inhibitor with a RET IC50 of 0.3 nM and is efficacious in vivo.

6.
ACS Med Chem Lett ; 9(7): 736-740, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034610

RESUMO

Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.

7.
ACS Med Chem Lett ; 8(5): 549-554, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523109

RESUMO

Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) superfamily of cation channels. TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of the alveolar septal barrier. Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with conditions such as congestive heart failure. Herein we report the discovery of an orally active, potent, and selective TRPV4 blocker, 3-(1,4'-bipiperidin-1'-ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-(trifluoromethyl)phenyl]-4-quinolinecarboxamide (GSK2193874, 28) after addressing an unexpected off-target cardiovascular liability observed from in vivo studies. GSK2193874 is a selective tool for elucidating TRPV4 biology both in vitro and in vivo.

8.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L158-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24838754

RESUMO

The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Canais de Cátion TRPV/antagonistas & inibidores , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Cloro/toxicidade , Células HEK293 , Humanos , Ácido Clorídrico/toxicidade , Masculino , Camundongos , Pneumonia/tratamento farmacológico , Ratos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/deficiência
9.
ACS Med Chem Lett ; 4(2): 293-6, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900661

RESUMO

High-throughput screening and subsequent hit optimization identified 1-piperidinylbenzimidazoles, exemplified by compound 1, as TRPV4 inhibitors. Lead optimization identified potent TRPV4 blocker 19, which has good target activity and pharmacokinetic properties. Inhibitor 19 was then profiled in an in vivo rat model, demonstrating its ability to inhibit TRPV4-mediated pulmonary edema.

10.
Sci Transl Med ; 4(159): 159ra148, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136043

RESUMO

Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Assuntos
Insuficiência Cardíaca/complicações , Moduladores de Transporte de Membrana/administração & dosagem , Moduladores de Transporte de Membrana/uso terapêutico , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/prevenção & controle , Canais de Cátion TRPV/antagonistas & inibidores , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Modelos Animais de Doenças , Diuréticos/farmacologia , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Endotélio/patologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Ratos , Canais de Cátion TRPV/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
11.
Bioorg Med Chem ; 17(19): 7056-63, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19747831

RESUMO

Voltage gated sodium channels represent an important therapeutic target for a number of neurological disorders including epilepsy. Unfortunately, medicinal chemistry strategies for discovering new classes of antagonist for trans-membrane ion channels have been limited to mostly broad screening compound arrays. We have developed new sodium channel antagonist based on a propofol scaffold using the ligand based strategy of comparative molecular field analysis (CoMFA). The resulting CoMFA model was correlated and validated to provide insights into the design of new antagonists and to prioritize synthesis of these new structural analogs (compounds 4 and 5) that satisfied the steric and electrostatic model. Compounds 4 and 5 were evaluated for [(3)H]-batrachotoxinin-A-20-alpha-benzoate ([(3)H]-BTX-B) displacement yielding IC(50)'s of 22 and 5.7 microM, respectively. We further examined the potency of these two compounds to inhibit neuronal sodium currents recorded from cultured hippocampal neurons. At a concentration of 50 microM, compounds 4 and 5 tonically inhibited sodium channels currents by 59+/-7.8% (n=5) and 70+/-7.5% (n=7), respectively. This clearly demonstrates that these compounds functionally antagonize native neuronal sodium channel currents. In summary, we have shown that CoMFA can be effectively used to discover new classes of sodium channel antagonists.


Assuntos
Amidas/química , Neurônios/efeitos dos fármacos , Propofol/química , Bloqueadores dos Canais de Sódio/química , Amidas/farmacologia , Anestésicos Intravenosos , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Doenças do Sistema Nervoso/tratamento farmacológico , Neurônios/fisiologia , Propofol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Relação Estrutura-Atividade
12.
J Pharmacol Exp Ther ; 320(2): 828-36, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17090703

RESUMO

Although propofol is most commonly known for its general anesthetic properties, at subanesthetic doses, propofol has been effectively used to suppress seizures during refractory status epilepticus, a mechanism, in part, attributed to the inhibition of neuronal sodium channels. In this study, we have designed and synthesized two novel analogs of propofol, HS245 [2-(3-ethyl-4-hydroxy-5-isopropyl-phenyl)-3,3,3-trifluoro-2-hydroxy-propionamide] and HS357 [2-hydroxy-8-(4-hydroxy-3,5-diisopropyl-phenyl)-2-trifluoromethyl-octanoic acid amide], and determined their effects on sodium currents recorded from cultured hippocampal neurons. HS357 had greater affinity for the inactivated state of the sodium channel than propofol and HS245 (0.22 versus 0.74 and 1.2 microM, respectively) and exhibited the greatest ratio of affinity for the resting over the inactivated state. HS357 also demonstrated greater use-dependent block and delayed recovery from inactivation in comparison with propofol and HS245. Under current-clamp conditions, action potentials from hippocampal CA1 neurons in slices were evoked by current injection, or following perfusion with a zero Mg(2+)/7 mM K(+) artificial cerebrospinal fluid solution. Propofol and HS357 reduced the number of current-induced action potentials; however, HS357 caused a greater reduction in the number of spontaneous action potentials. Consistent with these electrophysiology studies, propofol and HS357 protected mice against acute seizures in the 6-Hz (22-mA) partial psychomotor model. Efficacious doses of propofol were associated with an impairment of motor coordination as assessed in the rotorod toxicity assay. In contrast, HS357 demonstrated a 2-fold greater protective index than propofol. Thus, propofol analogs represent an important structural class from which not only effective, but also safer, anti-convulsants may be developed.


Assuntos
Amidas/farmacologia , Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Propofol/análogos & derivados , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Hipocampo/fisiologia , Propofol/farmacologia , Ratos , Relação Estrutura-Atividade
13.
Org Lett ; 8(24): 5505-8, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107058

RESUMO

Conjugated aldehydes undergo smooth Pd(OAc)2.PPh3- or Me2CuCNLi2-catalyzed 1,4-addition of dialkylzinc reagents. [reaction: see text].

14.
J Org Chem ; 71(13): 4840-4, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16776511

RESUMO

A convenient route to the enantiomers of 4-TIPS-3-butyn-2-ol of >95% enantiomeric purity by reduction of the ynone precursor 4 with the Noyori N-tosyl-1,2-diphenylethylenediamineruthenium cymene catalyst is described. The mesylate derivative of the (S) enantiomer (1c) is converted in situ to an allenylzinc or indium reagent in the presence of a catalyst derived from Pd(OAc)2 and Ph3P and either Et2Zn or InI. A second in situ addition of these reagents to aldehydes leads to anti homopropargylic alcohol adducts. The additions proceed in generally high (60-90%) yield with modest to excellent diastereoselectivity and high enantioselectivity. Only slight mismatching (<5%) is observed with chiral alpha-methyl and alpha-silyloxy aldehydes. Additions to alpha-substituted enals are highly diastereoselective, while beta,beta-disubstituted enals afford ca. 2:1 mixtures of anti and syn adducts.


Assuntos
Butanóis/síntese química , Índio/química , Compostos Organometálicos/química , Rutênio/química , Silanos/síntese química , Zinco/química , Alcadienos/química , Butanóis/química , Catálise , Estrutura Molecular , Silanos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...