Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460940

RESUMO

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Assuntos
Glicólise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Zinco , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Regulação Fúngica da Expressão Gênica , Peroxidases/metabolismo , Peroxidases/genética , Mutação
2.
Crit Rev Biochem Mol Biol ; 55(1): 88-110, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32192376

RESUMO

Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.


Assuntos
Proteínas de Transporte/genética , Homeostase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
3.
Mol Microbiol ; 113(1): 285-296, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31692084

RESUMO

Changes in RNA are often poor predictors of protein accumulation. One factor disrupting this relationship are changes in transcription start sites (TSSs). Therefore, we explored how alterations in TSS affected expression of genes regulated by the Zap1 transcriptional activator of Saccharomyces cerevisiae. Zap1 controls their response to zinc deficiency. Among over 80 known Zap1-regulated genes, several produced long leader transcripts (LLTs) in one zinc status condition and short leader transcripts (SLTs) in the other. Fusing LLT and SLT transcript leaders to green fluorescent protein indicated that for five genes, the start site shift likely has little effect on protein synthesis. For four genes, however, the different transcript leaders greatly affected translation. We focused on the HNT1 gene. Zap1 caused a shift from SLT HNT1 RNA in zinc-replete cells to LLT HNT1 RNA in deficient cells. This shift correlated with decreased protein production despite increased RNA. The LLT RNA contains multiple upstream open reading frames that can inhibit translation. Expression of the LLT HNT1 RNA was dependent on Zap1. However, expression of the long transcript was not required to decrease SLT HNT1 mRNA. Our results suggest that the Zap1-activated LLT RNA is a "fail-safe" mechanism to ensure decreased Hnt1 protein in zinc deficiency.


Assuntos
Hidrolases/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Zinco/deficiência , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas
4.
Mol Membr Biol ; 35(1): 39-50, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31617434

RESUMO

At present, the planet faces a change in the composition and bioavailability of nutrients. Zinc deficiency is a widespread problem throughout the world. It is imperative to understand the mechanisms that organisms use to adapt to the deficiency of this micronutrient. In the Ascomycetes fungi, the ZIP family of proteins is one of the most important for zinc transport and includes high affinity Zrt1p and low zinc affinity Zrt2p transporters. After identification and characterization of ZRT1/ZRT2-like genes in Ustilago maydis we conclude that they encode for high and low zinc affinity transporters, with no apparent iron transport activity. These conclusions were supported by the gene deletion in Ustilago and the functional characterization of ZRT1/ZRT2-like genes by measuring the intracellular zinc content over a range of zinc availability. The functional complementation of the S. cerevisiae ZRT1Δ ZRT2Δ mutant with U. maydis genes supports this as well. U. maydis ZRT2 gene, was found to be regulated by pH through Rim101 pathway, thus providing novel insights into how this Basidiomycota fungus can adapt to different levels of Zn availability.


Assuntos
Proteínas de Transporte , Proteínas Fúngicas , Transdução de Sinais , Ustilago , Zinco/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilago/genética , Ustilago/metabolismo
5.
Metallomics ; 10(12): 1755-1776, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30358795

RESUMO

Zinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis during deficiency is "zinc sparing" in which specific zinc-binding proteins are repressed to reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc proteome of Saccharomyces cerevisiae. The yeast zinc proteome of 582 known or potential zinc-binding proteins was identified using a bioinformatics analysis that combined global domain searches with local motif searches. Protein abundance was determined by mass spectrometry. In zinc-replete cells, we detected over 2500 proteins among which 229 were zinc proteins. Based on copy number estimates and binding stoichiometries, a replete cell contains ∼9 million zinc-binding sites on proteins. During zinc deficiency, many zinc proteins decreased in abundance and the zinc-binding requirement decreased to ∼5 million zinc atoms per cell. Many of these effects were due at least in part to changes in mRNA levels rather than simply protein degradation. Measurements of cellular zinc content showed that the level of zinc atoms per cell dropped from over 20 million in replete cells to only 1.7 million in deficient cells. These results confirmed the ability of replete cells to store excess zinc and suggested that the majority of zinc-binding sites on proteins in deficient cells are either unmetalated or mismetalated. Our analysis of two abundant zinc proteins, Fba1 aldolase and Met6 methionine synthetase, supported that hypothesis. Thus, we have discovered widespread zinc sparing mechanisms and obtained evidence of a high accumulation of zinc proteins that lack their cofactor during deficiency.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Fúngica da Expressão Gênica , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
Genes (Basel) ; 9(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235899

RESUMO

Zinc homeostasis is essential for all organisms. The Zap1 transcriptional activator regulates these processes in the yeast Saccharomyces cerevisiae. During zinc deficiency, Zap1 increases expression of zinc transporters and proteins involved in adapting to the stress of zinc deficiency. Transcriptional activation by Zap1 can also repress expression of some genes, e.g., RTC4. In zinc-replete cells, RTC4 mRNA is produced with a short transcript leader that is efficiently translated. During deficiency, Zap1-dependent expression of an RNA with a longer transcript leader represses the RTC4 promoter. This long leader transcript (LLT) is not translated due to the presence of small open reading frames upstream of the RTC4 coding region. In this study, we show that the RTC4 LLT RNA also plays a second function, i.e., repression of the adjacent GIS2 gene. In generating the LLT transcript, RNA polymerase II transcribes RTC4 through the GIS2 promoter. Production of the LLT RNA correlates with the decreased expression of GIS2 mRNA and mutations that prevent synthesis of the LLT RNA or terminate it before the GIS2 promoter renders GIS2 mRNA expression and Gis2 protein accumulation constitutive. Thus, we have discovered an unusual regulatory mechanism that uses a bicistronic RNA to control two genes simultaneously.

7.
Sci Rep ; 8(1): 14412, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258092

RESUMO

The presence of the toxic metal cadmium (Cd2+) in certain foodstuffs is recognised as a global problem, and there is increasing legislative pressure to reduce the content of Cd in food. The present study was conducted on cacao (Theobroma cacao), the source of chocolate, and one of the crops known to accumulate Cd in certain conditions. There are a range of possible genetic and agronomic methods being tested as a route to such reduction. As part of a gene-based approach, we focused on the Natural Resistance-Associated Macrophage Proteins (NRAMPS), a family of proton/metal transporter proteins that are evolutionarily conserved across all species from bacteria to humans. The plant NRAMP gene family are of particular importance as they are responsible for uptake of the nutritionally vital divalent cations Fe2+, Mn2+, Zn2+, as well as Cd2+. We identified the five NRAMP genes in cacao, sequenced these genes and studied their expression in various organs. We then confirmed the expression patterns in response to variation in nutrient cation availability and addition of Cd2+. Functional analysis by expression in yeast provided evidence that NRAMP5 encoded a protein capable of Cd2+ transport, and suggested this gene as a target for genetic selection/modification.


Assuntos
Cacau/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Bases , Cacau/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética
8.
Genetics ; 208(3): 1115-1130, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29321173

RESUMO

The Zap1 transcription factor of Saccharomyces cerevisiae is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene ATG41 Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of ATG41 diminishes that response. Several experiments indicated that the importance of ATG41 function to growth during zinc deficiency is not because of its role in macroautophagy, but rather is due to one or more autophagy-independent functions. For example, rapamycin treatment fully induced autophagy in zinc-deficient atg41Δ mutants but failed to improve growth. In addition, atg41Δ mutants showed a far more severe growth defect than any of several other autophagy mutants tested, and atg41Δ mutants showed increased Heat Shock Factor 1 activity, an indicator of protein homeostasis stress, while other autophagy mutants did not. An autophagy-independent function for ATG41 in sulfur metabolism during zinc deficiency was suggested by analyzing the transcriptome of atg41Δ mutants during the transition from zinc-replete to -deficient conditions. Analysis of sulfur metabolites confirmed that Atg41 is needed for the normal accumulation of methionine, homocysteine, and cysteine in zinc-deficient cells. Therefore, we conclude that Atg41 plays roles in both macroautophagy and sulfur metabolism during zinc deficiency.


Assuntos
Autofagia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Zinco/deficiência , Sequência de Aminoácidos , Proteínas de Transporte/química , Mutação , Fenótipo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Mol Microbiol ; 106(5): 678-689, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963784

RESUMO

Maintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins. In this report, we describe a new mechanism of Zap1-mediated regulation whereby increased transcription of certain target genes results in reduced protein expression. Transcription of the Zap1-responsive genes RTC4 and RAD27 increases markedly in zinc-deficient cells but, surprisingly, their protein levels decrease. We examined the underlying mechanism further for RTC4 and found that this unusual regulation results from altered transcription start site selection. In zinc-replete cells, RTC4 transcription begins near the protein-coding region and the resulting short transcript leader allows for efficient translation. In zinc-deficient cells, RTC4 RNA with longer transcript leaders are expressed that are not efficiently translated due to the presence of multiple small open reading frames upstream of the coding region. This regulation requires a potential Zap1 binding site located farther upstream of the promoter. Thus, we present evidence for a new mechanism of Zap1-mediated gene regulation and another way that this activator protein can repress protein expression.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Homeostase , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica/genética , Ativação Transcricional/genética , Zinco/metabolismo
10.
PLoS One ; 11(9): e0163256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27657924

RESUMO

The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5' end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, ß-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5' UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5' UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5' UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome.

11.
J Biol Chem ; 291(36): 18880-96, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432887

RESUMO

Stability of many proteins requires zinc. Zinc deficiency disrupts their folding, and the ubiquitin-proteasome system may help manage this stress. In Saccharomyces cerevisiae, UBI4 encodes five tandem ubiquitin monomers and is essential for growth in zinc-deficient conditions. Although UBI4 is only one of four ubiquitin-encoding genes in the genome, a dramatic decrease in ubiquitin was observed in zinc-deficient ubi4Δ cells. The three other ubiquitin genes were strongly repressed under these conditions, contributing to the decline in ubiquitin. In a screen for ubi4Δ suppressors, a hypomorphic allele of the RPT2 proteasome regulatory subunit gene (rpt2(E301K)) suppressed the ubi4Δ growth defect. The rpt2(E301K) mutation also increased ubiquitin accumulation in zinc-deficient cells, and by using a ubiquitin-independent proteasome substrate we found that proteasome activity was reduced. These results suggested that increased ubiquitin supply in suppressed ubi4Δ cells was a consequence of more efficient ubiquitin release and recycling during proteasome degradation. Degradation of a ubiquitin-dependent substrate was restored by the rpt2(E301K) mutation, indicating that ubiquitination is rate-limiting in this process. The UBI4 gene was induced ∼5-fold in low zinc and is regulated by the zinc-responsive Zap1 transcription factor. Surprisingly, Zap1 controls UBI4 by inducing transcription from an intragenic promoter, and the resulting truncated mRNA encodes only two of the five ubiquitin repeats. Expression of a short transcript alone complemented the ubi4Δ mutation, indicating that it is efficiently translated. Loss of Zap1-dependent UBI4 expression caused a growth defect in zinc-deficient conditions. Thus, the intragenic UBI4 promoter is critical to preventing ubiquitin deficiency in zinc-deficient cells.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Ubiquitina C/biossíntese , Zinco/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ubiquitina C/genética
12.
Microbiologyopen ; 4(3): 409-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755096

RESUMO

Antimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described. Usually, a new biological role is reported along with the discovery of a new defensin and it is thus not clear if this multifunctionality exists at the family level or at the peptide level. We previously showed that the plant defensin AhPDF1.1b exhibits an unexpected role by conferring zinc tolerance to yeast and plant cells. In this paper, we further explored this activity using different yeast genetic backgrounds: especially the zrc1 mutant and an UPRE-GFP reporter yeast strain. We showed that AhPDF1.1b interferes with adaptive cell response in the endoplasmic reticulum to confer cellular zinc tolerance. We thus highlighted that, depending on its cellular localization, AhPDF1.1b exerts quite separate activities: when it is applied exogenously, it is a toxin against fungal and also root cells, but when it is expressed in yeast cells, it is a peptide that modulates the cellular adaptive response to zinc overload.


Assuntos
Antifúngicos/metabolismo , Defensinas/metabolismo , Expressão Gênica , Proteínas de Plantas , Proteínas Recombinantes , Leveduras/genética , Leveduras/metabolismo , Zinco/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Reatores Biológicos , Defensinas/genética , Retículo Endoplasmático/metabolismo , Fermentação , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Dobramento de Proteína , Vitamina K 3/metabolismo
13.
Mol Microbiol ; 96(3): 581-95, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644708

RESUMO

Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn(2+) was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 µM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Leishmania infantum/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Teste de Complementação Genética , Leishmania infantum/enzimologia , Leishmania infantum/genética , Oócitos/enzimologia , Oócitos/metabolismo , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Xenopus laevis
14.
Mol Microbiol ; 94(4): 743-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213645

RESUMO

Zinc is a catalytic or structural cofactor of numerous proteins but can also be toxic if cells accumulate too much of this essential metal. Therefore, mechanisms of zinc homeostasis are needed to maintain a low but adequate amount of free zinc so that newly translated zinc-dependent proteins can bind their cofactor without confounding issues of toxicity. These mechanisms include the regulation of uptake and efflux transporters and buffering of the free metal concentration by low-molecular-weight ligands in the cytosol. While many of the transporters involved in zinc homeostasis have been discovered in recent years, the molecules that buffer zinc have remained largely a mystery. In the new report highlighted by this commentary, Ma et al. (2014) provide convincing evidence that bacillithiol, the major low-molecular-weight thiol compound in Bacillus subtilis, serves as an important zinc buffer in those cells. Their discovery provides an important piece to the puzzle of how zinc buffering occurs in a large number of microbes and provides new clues about the role and relative importance of zinc buffering in all organisms.


Assuntos
Bacillus subtilis/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Zinco/metabolismo
15.
J Biol Chem ; 288(43): 31313-27, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24022485

RESUMO

Zinc is required for the folding and function of many proteins. In Saccharomyces cerevisiae, homeostatic and adaptive responses to zinc deficiency are regulated by the Zap1 transcription factor. One Zap1 target gene encodes the Tsa1 peroxiredoxin, a protein with both peroxidase and protein chaperone activities. Consistent with its regulation, Tsa1 is critical for growth under low zinc conditions. We previously showed that Tsa1's peroxidase function decreases the oxidative stress that occurs in zinc deficiency. In this report, we show that Tsa1 chaperone, and not peroxidase, activity is the more critical function in zinc-deficient cells. Mutations restoring growth to zinc-deficient tsa1 cells inactivated TRR1, encoding thioredoxin reductase. Because Trr1 is required for oxidative stress tolerance, this result implicated the Tsa1 chaperone function in tolerance to zinc deficiency. Consistent with this hypothesis, the tsa1Δ zinc requirement was complemented by a Tsa1 mutant allele that retained only chaperone function. Additionally, growth of tsa1Δ was also restored by overexpression of holdase chaperones Hsp26 and Hsp42, which lack peroxidase activity, and the Tsa1 paralog Tsa2 contributed to suppression by trr1Δ, even though trr1Δ inactivates Tsa2 peroxidase activity. The essentiality of the Tsa1 chaperone suggested that zinc-deficient cells experience a crisis of disrupted protein folding. Consistent with this model, assays of protein homeostasis suggested that zinc-limited tsa1Δ mutants accumulated unfolded proteins and induced a corresponding stress response. These observations demonstrate a clear physiological role for a peroxiredoxin chaperone and reveal a novel and unexpected role for protein homeostasis in tolerating metal deficiency.


Assuntos
Proteínas de Choque Térmico/metabolismo , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/deficiência , Proteínas de Choque Térmico/genética , Homeostase/genética , Peroxidases/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
16.
Mol Aspects Med ; 34(2-3): 612-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23506894

RESUMO

Zinc is a trace element nutrient that is essential for life. This mineral serves as a cofactor for enzymes that are involved in critical biochemical processes and it plays many structural roles as well. At the cellular level, zinc is tightly regulated and disruption of zinc homeostasis results in serious physiological or pathological issues. Despite the high demand for zinc in cells, free or labile zinc must be kept at very low levels. In humans, two major zinc transporter families, the SLC30 (ZnT) family and SLC39 (ZIP) family control cellular zinc homeostasis. This review will focus on the SLC39 transporters. SLC39 transporters primarily serve to pass zinc into the cytoplasm, and play critical roles in maintaining cellular zinc homeostasis. These proteins are also significant at the organismal level, and studies are revealing their link to human diseases. Therefore, we will discuss the function, structure, physiology, and pathology of SLC39 transporters.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Homeostase/fisiologia , Modelos Moleculares , Família Multigênica/genética , Conformação Proteica , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Citoplasma/metabolismo , Homeostase/genética , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Filogenia , Especificidade da Espécie
17.
Proc Natl Acad Sci U S A ; 109(51): E3530-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213233

RESUMO

Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles.It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers­Danlos syndrome (SCD-EDS), a heritable connective tissue disorder.Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast,this study indicates that ZIP13's role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Mutação , Zinco/metabolismo , Transporte Biológico , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Modelos Genéticos , RNA Interferente Pequeno/metabolismo , Distribuição Tecidual , Zinco/química
18.
Microbiologyopen ; 1(2): 105-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22950018

RESUMO

The zinc-responsive Zap1 transcription factor of Saccharomyces cerevisiae controls many genes involved in zinc homeostasis. Zap1 has two activation domains, AD1 and AD2, which are independently regulated by zinc. While AD1 can fully activate most Zap1 target genes, AD2 is active only on a subset of those genes. One hypothesis explaining this promoter specificity was that AD1 and AD2 recruit different coactivators. To address this question, we carried out a genetic screen to identify coactivator complexes that are required for Zap1-mediated activation. SWI/SNF, SAGA, and Mediator complexes were implicated as playing major roles in Zap1 activation. Consistent with this conclusion, we found that these three complexes are recruited to Zap1 target promoters in a zinc-responsive and Zap1-dependent manner. Coactivator recruitment was highly interdependent such that mutations disrupting SAGA impaired recruitment of SWI/SNF and vice versa. Optimal Mediator recruitment was dependent on both SAGA and SWI/SNF. A comparison of the coactivators recruited by AD1 and AD2 found no obvious differences suggesting that recruitment of different coactivators is not likely the mechanism of AD specificity. Rather, our results suggest that AD2 recruits coactivators less effectively than AD1 and is therefore only functional on some promoters.

19.
PLoS Genet ; 8(6): e1002699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685415

RESUMO

Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Zinco/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Homeostase/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
20.
Sci Signal ; 5(210): pe5, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22317920

RESUMO

An often-asked question is, Why are there so many different transporters in a cell to take up a particular substrate? At least part of the answer comes from work on the possible competitive advantage of dual-transporter systems. In such systems, low-affinity transporters function when a nutrient is plentiful in the environment, and the abundance of high-affinity transporters is increased when that nutrient becomes scarce. A dual-transporter system enabled a long "preparation phase" to occur during which cells induce gene expression as they become increasingly starved. Surprisingly, the preparation phase is important not for growth under low-nutrient conditions but rather for fluctuating nutrient amounts as commonly occurs in nature. Thus, this creative study provides a previously unconsidered explanation for the abundance of dual-transporter systems in biology.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...