Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-18419299

RESUMO

Protein phosphorylation regulates the period of the circadian clock within mammalian cells. Circadian rhythms are an approximately 24-hour cycle that regulates key biological processes. Daily fluctuations of wakefulness, stress hormones, lipid metabolism, immune function, and the cell division cycle are controlled by the molecular clocks that function throughout our bodies. Mutations in regulatory components of the clock can shorten or lengthen the timing of the rhythms and have significant physiological consequences. The clock is formed by a negative feedback loop of transcription, translation, and inhibition of transcription. The precision of clock timing is controlled by protein kinases and phosphatases. Casein kinase Iepsilon is a protein kinase that regulates the circadian clock by periodic phosphorylation of the proteins PER1 and PER2, controlling their stability and localization. The role of phosphorylation in regulating PER function in the clock has been explored in detail. Quantitative modeling has proven to be very useful in making important predictions about how changes in phosphorylation alter the clock's behavior. Quantitative data from biological studies can be used to refine the quantitative model and make additional testable predictions. A detailed understanding of how reversible protein phosphorylation regulates circadian rhythms and a detailed quantitative model that makes clear, testable, and accurate predictions about the clock and how we may manipulate it can have important benefits for human health. Pharmacological manipulation of rhythms could mitigate stress from jet lag, shift work, and perhaps even seasonal affective disorder.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas/metabolismo , Animais , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/genética , Retroalimentação Fisiológica , Mamíferos , Camundongos , Modelos Biológicos , Mutação , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo
2.
Chronobiol Int ; 18(3): 389-98, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11475410

RESUMO

Multiple components of the circadian central clock are phosphoproteins, and it has become increasingly clear that posttranslational modification is an important regulator of circadian rhythm in diverse organisms, from dinoflagellates to humans. Genetic studies in Drosophila have identified double-time (dbt), a serine/threonine protein kinase that is highly homologous to human casein kinase I epsilon (CKIepsilon), as the first kinase linked to behavioral rhythms. Identification of a missense mutation in CKIepsilon as the tau mutation in the Syrian hamster places CKIepsilon within the core clock machinery in mammals. Most recently, identification of a phosphorylation site mutant of hPER2 in a family with an inherited circadian rhythm abnormality strongly suggests that PER2 is a physiologically relevant substrate of CKI. Phosphorylation may regulate multiple properties of clock proteins, including stability and intracellular localization.


Assuntos
Caseína Quinase 1 épsilon , Ritmo Circadiano , Proteínas de Drosophila , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinases , Cricetinae , Drosophila , Mesocricetus , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Fosforilação , Proteínas Quinases/genética , Homologia de Sequência de Aminoácidos
3.
Science ; 291(5506): 1040-3, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11232563

RESUMO

Familial advanced sleep phase syndrome (FASPS) is an autosomal dominant circadian rhythm variant; affected individuals are "morning larks" with a 4-hour advance of the sleep, temperature, and melatonin rhythms. Here we report localization of the FASPS gene near the telomere of chromosome 2q. A strong candidate gene (hPer2), a human homolog of the period gene in Drosophila, maps to the same locus. Affected individuals have a serine to glycine mutation within the casein kinase Iepsilon (CKIepsilon) binding region of hPER2, which causes hypophosphorylation by CKIepsilon in vitro. Thus, a variant in human sleep behavior can be attributed to a missense mutation in a clock component, hPER2, which alters the circadian period.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transtornos do Sono do Ritmo Circadiano/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinases , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Éxons , Feminino , Ligação Genética , Glicina , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Linhagem , Proteínas Circadianas Period , Fosforilação , Polimorfismo Conformacional de Fita Simples , Proteínas Quinases/metabolismo , Proteínas/química , Serina , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Fatores de Transcrição
4.
Oncogene ; 17(9): 1119-30, 1998 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-9764822

RESUMO

Erythroleukemia induced by the anemia strain of Friend virus occurs in two stages. The first stage results in rapid expansion of pre-leukemic proerythroblasts (FVA cells) dependent on erythropoietin (Epo) for differentiation and survival in vitro. The second stage is characterized by emergence of erythroleukemic clones (MEL cells) which typically bear activation of the ets-oncogene, PU.1/spi.1, and loss of functional p53. We developed a Friend virus-sensitive, p53-deficient mouse model to investigate the biological advantage conferred by p53-loss during tumor progression. Here we report p53 was not required for cell survival or growth arrest during differentiation of FVA cells, nor was p53 required for induction of apoptosis upon Epo withdrawal. However, we detected induction of the p21Cip1 cyclin-dependent kinase inhibitor gene during differentiation, which was markedly enhanced in the presence of p53. p53-dependent expression of p21Cip1 occurred in the absence of an increase in p53 mRNA and protein levels and was specific for p21Cip1, since expression of gadd45, mdm-2, cyclin G and bax were unaffected by p53. In contrast, treatment of FVA cells with DNA damaging agents led to rapid accumulation of p53 protein resulting in transcription of multiple p53-regulated genes, leading to either apoptosis or growth arrest, depending on the agent used. These data demonstrate that p53-dependent activities during differentiation of preleukemic erythroblasts are distinct from those observed in response to genotoxic agents. We propose that enhancement of p53-dependent gene expression during differentiation may represent a tumor suppressor function which is necessary to monitor differentiation of preleukemic cells and which is selected against during tumor progression.


Assuntos
Dano ao DNA/fisiologia , Vírus da Leucemia Murina de Friend , Leucemia Eritroblástica Aguda/fisiopatologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Ciclinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Dactinomicina/farmacologia , Progressão da Doença , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Eritroblastos/efeitos da radiação , Eritropoetina/farmacologia , Feminino , Fase G1/efeitos dos fármacos , Fase G1/genética , Fase G1/efeitos da radiação , Expressão Gênica/genética , Genes p53/efeitos dos fármacos , Genes p53/genética , Genes p53/efeitos da radiação , Leucemia Eritroblástica Aguda/patologia , Leucemia Eritroblástica Aguda/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Mutação/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Ativação Transcricional/efeitos da radiação , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...