Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(12): e202400204, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38602716

RESUMO

Pathogenesis-related class 10 (PR-10) proteins play a crucial role in plant defense by acting as ribonucleases. The specific mechanism of action and substrate specificity of these proteins have remained largely unexplored so far. In this study, we elucidate the enzymatic activity of Pru p 1, a PR-10 protein from peach. We demonstrate that this protein catalyzes the endonucleolytic backbone cleavage of RNA substrates into short oligonucleotides. Initial cleavage products, identified through kinetic analysis, can bind again, priming them for further degradation. NMR binding site mapping reveals that the large internal cavity of Pru p 1, which is characteristic for PR-10 proteins, serves as an anchoring site for single-stranded ribonucleotide chains. We propose a structure-based mechanistic model that accounts for the observed cleavage patterns and the inhibitory effect of zeatin, a nucleoside analog, on the ribonuclease activity of Pru p 1.


Assuntos
Proteínas de Plantas , Sítios de Ligação , Endonucleases/metabolismo , Endonucleases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA/metabolismo , RNA/química , Especificidade por Substrato , Prunus persica
3.
Food Chem ; 410: 135374, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608553

RESUMO

Naturally occurring polyphenols can modify the molecular properties of food allergens. For the major apple allergen Mal d 1 it has been postulated that chemical reactions with polyphenols cause permanent changes in the tertiary structure, causing a loss of conformational IgE epitopes and reducing allergenicity. In our study, we investigated the effect that reactions with oxidized polyphenols have on the structure of Mal d 1 by mass spectrometry and NMR spectroscopy. We showed that a surface-exposed cysteine residue in this allergen spontaneously reacts with oxidized polyphenols under formation of a defined covalent adduct. Chemical modification of Mal d 1 did not destabilize or perturb the three-dimensional fold, nor did it interfere with ligand binding to its internal pocket. A structural model of the chemically modified apple allergen is presented, which reveals that the bound polyphenol partially covers a conformational IgE epitope on the protein surface.


Assuntos
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Cisteína , Alérgenos/química , Epitopos , Imunoglobulina E
4.
Nat Commun ; 13(1): 7076, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400772

RESUMO

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a ß-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.


Assuntos
Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Pequeno RNA não Traduzido/genética
5.
Foods ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230029

RESUMO

The protein Mal d 1 is responsible for most allergic reactions to apples (Malus domestica) in the northern hemisphere. Mal d 1 contains a cysteine residue on its surface, with its reactive side chain thiol exposed to the surrounding food matrix. We show that, in vitro, this cysteine residue is prone to spontaneous chemical modification by ascorbic acid (vitamin C). Using NMR spectroscopy and mass spectrometry, we characterize the chemical structure of the cysteine adduct and provide a three-dimensional structural model of the modified apple allergen. The S-ascorbylated cysteine partially masks a major IgE antibody binding site on the surface of Mal d 1, which attenuates IgE binding in sera of apple-allergic patients. Our results illustrate, from a structural perspective, the role that chemical modifications of allergens with components of the natural food matrix can play.

6.
Cell Mol Life Sci ; 79(11): 562, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271951

RESUMO

Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17ß-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC-MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here.


Assuntos
3-Hidroxiacil-CoA Desidrogenases , Hidroxiesteroide Desidrogenases , Humanos , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Cardiolipinas , Cromatografia Líquida , Espectrometria de Massas em Tandem , DNA Mitocondrial , Fosfolipases Tipo C
7.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897827

RESUMO

PR-10 proteins constitute a major cause of food allergic reactions. Birch-pollen-related food allergies are triggered by the immunologic cross-reactivity of IgE antibodies with structurally homologous PR-10 proteins that are present in birch pollen and various food sources. While the three-dimensional structures of PR-10 food allergens have been characterized in detail, only a few experimental studies have addressed the structural flexibility of these proteins. In this study, we analyze the millisecond-timescale structural flexibility of thirteen PR-10 proteins from prevalent plant food sources by NMR relaxation-dispersion spectroscopy, in a comparative manner. We show that all the allergens in this study have inherently flexible protein backbones in solution, yet the extent of the structural flexibility appears to be strikingly protein-specific (but not food-source-specific). Above-average flexibility is present in the two short helices, α1 and α2, which form a V-shaped support for the long C-terminal helix α3, and shape the internal ligand-binding cavity, which is characteristic for PR-10 proteins. An in-depth analysis of the NMR relaxation-dispersion data for the PR-10 allergen from peanut reveals the presence of at least two subglobal conformational transitions on the millisecond timescale, which may be related to the release of bound low-molecular-weight ligands from the internal cavity.


Assuntos
Hipersensibilidade Alimentar , Pólen , Alérgenos , Sequência de Aminoácidos , Antígenos de Plantas , Betula/metabolismo , Reações Cruzadas , Proteínas de Plantas/metabolismo , Pólen/metabolismo
8.
J Agric Food Chem ; 69(29): 8120-8129, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260238

RESUMO

Peach (Prunus persica) is among the fruits most frequently reported to cause food allergies. Allergic reactions commonly result from previous sensitization to the birch pollen allergen Bet v 1, followed by immunological cross-reactivity of IgE antibodies to structurally related proteins in peach. In this study, we present the three-dimensional NMR solution structure of the cross-reactive peach allergen Pru p 1 (isoform Pru p 1.0101). This 17.5 kDa protein adopts the canonical Bet v 1 fold, composed of a seven-stranded ß-sheet and three α-helices enclosing an internal cavity. In Pru p 1, the inner surface of the cavity contains an array of hydroxyl-bearing amino acids surrounded by a hydrophobic patch, constituting a docking site for amphiphilic molecules. NMR-guided docking of the cytokinin molecule zeatin to the internal cavity of Pru p 1 provides a structure-based rationale for the effect that zeatin binding has on the protein's RNase activity.


Assuntos
Hipersensibilidade Alimentar , Prunus persica , Alérgenos , Antígenos de Plantas , Proteínas de Plantas , Zeatina
9.
J Am Soc Mass Spectrom ; 32(7): 1841-1845, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101451

RESUMO

In microdroplets, rates of chemical or biomolecular reactions can exceed those in the bulk phase by more than a million times. As electrospray ionization-based mass spectrometry (MS) involves the formation of charged microdroplets, reaction acceleration and online MS monitoring of reaction products can readily be performed at the same time. We investigated accelerated enzymatic reactions in microdroplets and focused on the proteolytic enzyme pepsin. Electrosonic spray ionization (ESSI) was utilized for developing the ultrarapid pepsin in-spray digestion of two different proteins, cytochrome c and RocC, at low pH values. The optimization of the protein digestion aimed at achieving maximum sequence coverage for the analyzed proteins. Furthermore, carefully designed control experiments allowed us to unambiguously prove that enzymatic protein cleavage almost exclusively occurs within the spray at a millisecond time scale and not prior to microdroplet generation.


Assuntos
Pepsina A/metabolismo , Proteínas , Espectrometria de Massas por Ionização por Electrospray/métodos , Modelos Químicos , Pepsina A/química , Proteínas/análise , Proteínas/química , Proteínas/metabolismo
10.
Immun Inflamm Dis ; 9(2): 503-511, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33621436

RESUMO

BACKGROUND: Seventy percent of patients suffering from birch pollen allergy (BPA) develop a pollen-related food allergy (prFA), especially to apples, due to a clinically relevant cross-reactivity between the major allergen in birch Bet v 1 and Mal d 1 in apples. Therefore allergen-specific immunotherapy with fresh apples (AITA) could be a promising natural treatment of both BPA and prFA. OBJECTIVE: To assess the clinical efficacy of immunotherapy by daily apple consumption for patients with BPA and prFA. METHODS: A daily defined increasing amount of selected cultivars (Red Moon®, Pink Lady®, Topaz, Golden Delicious) was continuously consumed by 16 patients (12 female; median age; 50; range, 23-68 years), leading to increased intake of allergen over a period of at least 8 months. Specific IgE and IgG4 to Bet v 1 and Mal d 1, conjunctival and oral provocation tests, skin reactivity, and the average daily rhinoconjunctivitis combined symptom and medication score (CSMS) were measured during the peak birch pollen season. RESULTS: After 8 months of therapy, patients showed increased tolerance to apples (p < .001) and a decreased skin reactivity to apples. Oral allergy syndrome to other birch prFA than apple also decreased (p < .05). Moreover, daily rhinoconjunctivitis CSMS declined by 34% (p < .001), as did conjunctival reactivity to birch pollen extract by 27% (p < .01), while specific IgG4 to Mal d 1 and Bet v 1 increased (p < .01).


Assuntos
Hipersensibilidade Alimentar , Malus , Adulto , Idoso , Betula , Dessensibilização Imunológica , Feminino , Hipersensibilidade Alimentar/terapia , Humanos , Imunoglobulina E , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Pólen , Adulto Jovem
11.
Biomol NMR Assign ; 15(1): 61-64, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33179208

RESUMO

In prokaryotic species, gene expression is commonly regulated by small, non-coding RNAs (sRNAs). In the gram-negative bacterium Legionella pneumophila, the regulatory, trans-acting sRNA molecule RocR base pairs with a complementary sequence in the 5'-untranslated region of mRNAs encoding for proteins in the bacterial DNA uptake system, thereby controlling natural competence. Sense-antisense duplexing of RocR with targeted mRNAs is mediated by the recently described RNA chaperone RocC. RocC contains a 12 kDa FinO-domain, which acts as sRNA binding platform, along with an extended C-terminal segment that is predicted to be mostly disordered but appears to be required for repression of bacterial competence. In this work we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of RocC's FinO-domain by solution NMR spectroscopy. The chemical shift data for this protein indicate a mixed α/ß fold that is reminiscent of FinO from Escherichia coli. Our NMR resonance assignments provide the basis for a comprehensive analysis of RocC's chaperoning mechanism on a structural level.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Pequeno RNA não Traduzido , Proteínas de Escherichia coli , Legionella pneumophila
12.
Hum Mutat ; 40(2): 177-186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372562

RESUMO

The Sjögren-Larsson syndrome (SLS) is a rare autosomal recessive disorder caused by pathogenic variants in the ALDH3A2 gene, which codes for fatty aldehyde dehydrogenase (FALDH). FALDH prevents the accumulation of toxic fatty aldehydes by converting them into fatty acids. Pathogenic ALDH3A2 variants cause symptoms such as ichthyosis, spasticity, intellectual disability, and a wide range of less common clinical features. Interpreting patient-to-patient variability is often complicated by inconsistent reporting and negatively impacts on establishing robust criteria to measure the success of SLS treatments. Thus, with this study, patient-centered literature data was merged into a concise genotype-based, open-access database (www.LOVD.nl/ALDH3A2). One hundred and seventy eight individuals with 90 unique SLS-causing variants were included with phenotypic data being available for more than 90%. While the three lead symptoms did occur in almost all cases, more heterogeneity was observed for other frequent clinical manifestations of SLS. However, a stringent genotype-phenotype correlation analysis was hampered by the considerable variability in reporting phenotypic features. Consequently, we compiled a set of recommendations of how to generate comprehensive SLS patient descriptions in the future. This will be of benefit on multiple levels, for example, in clinical diagnosis, basic research, and the development of novel treatment options for SLS.


Assuntos
Aldeído Oxirredutases/genética , Aldeídos/metabolismo , Ácidos Graxos/metabolismo , Síndrome de Sjogren-Larsson/genética , Bases de Dados Factuais , Feminino , Variação Genética/genética , Genótipo , Humanos , Masculino , Mutação/genética , Fenótipo , Síndrome de Sjogren-Larsson/metabolismo , Síndrome de Sjogren-Larsson/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...