Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pediatr ; 181(1): 335-347, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34309706

RESUMO

Evidence on the use and efficacy of medical cannabis for children is limited. We examined clinical and epidemiological characteristics of medical cannabis treatment and caregiver-reported effects in children and adolescents in Switzerland. We collected clinical data from children and adolescents (< 18 years) who received Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), or a combination of the two between 2008 and 2019 in Switzerland. Out of 205 contacted families, 90 agreed to participate. The median age at the first prescription was 11.5 years (interquartile range (IQR) 6-16), and 32 patients were female (36%). Fifty-one (57%) patients received CBD only and 39 (43%) THC. Patients were more likely to receive THC therapy if one of the following symptoms or signs were present: spasticity, pain, lack of weight gain, vomiting, or nausea, whereas seizures were the dominant indication for CBD therapy. Improvements were reported in 59 (66%) study participants. The largest treatment effects were reported for pain, spasticity, and frequency of seizures in participants treated with THC, and for those treated with pure CBD, the frequency of seizures. However, 43% of caregivers reported treatment interruptions, mainly because of lack of improvement (56%), side effects (46%), the need for a gastric tube (44%), and cost considerations (23%).Conclusions: The effects of medical cannabis in children and adolescents with chronic conditions are unknown except for rare seizure disorders, but the caregiver-reported data analysed here may justify trials of medical cannabis with standardized concentrations of THC or CBD to assess its efficacy in the young. What is Known: • The use of medical cannabis (THC and CBD) to treat a variety of diseases among children and adolescents is increasing. • In contrast to adults, there is no evidence to support the use of medical cannabis to treat chronic pain and spasticity in children, but substantial evidence to support the use of CBD in children with rare seizure disorders. What is New: • This study provides important insights into prescription practices, dosages, and treatment outcomes in children and adolescents using medical cannabis data from a real-life setting. • The effects of medical cannabis in children and adolescents with chronic conditions shown in our study support trials of medical cannabis for chronic conditions.


Assuntos
Cannabis , Dor Crônica , Maconha Medicinal , Adolescente , Adulto , Cuidadores , Criança , Dronabinol/uso terapêutico , Feminino , Humanos , Maconha Medicinal/uso terapêutico , Suíça
2.
Planta Med ; 82(13): 1192-201, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27420350

RESUMO

Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 (< 1.12) and unchanged apparent permeability coefficient values in the presence of the P-glycoprotein inhibitor verapamil (50 µM) indicated that tryptanthrin was not involved in P-glycoprotein interactions. For indolinone, a low recovery was found in the human colon adenocarcinoma cell assay. High-resolution mass spectrometry pointed to extensive phase II metabolism of indolinone (sulfation and glucuronidation). Possible cardiotoxic liability of the compounds was assessed in vitro by measurement of an inhibitory effect on human ether-a-go-go-related gene tail currents in stably transfected HEK 293 cells using the patch clamp technique. Low human ether-a-go-go-related gene inhibition was found for tryptanthrin (IC50 > 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations.


Assuntos
Antialérgicos/farmacocinética , Anti-Inflamatórios não Esteroides/farmacocinética , Indóis/farmacocinética , Pirogalol/análogos & derivados , Quinazolinas/farmacocinética , Células CACO-2 , Permeabilidade da Membrana Celular , Cromatografia Líquida de Alta Pressão/métodos , Células HEK293 , Humanos , Absorção Intestinal , Isatis/química , Pirogalol/farmacocinética , Espectrometria de Massas em Tandem
3.
Planta Med ; 82(11-12): 1021-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27093249

RESUMO

The indolo[2,1-b]quinazoline alkaloid tryptanthrin was previously identified as a potent anti-inflammatory compound with a unique pharmacological profile. It is a potent inhibitor of cyclooxygenase-2, 5-lipooxygenase-catalyzed leukotriene synthesis, and nitric oxide production catalyzed by the inducible nitric oxide synthase. To characterize the pharmacokinetic properties of tryptanthrin, we performed a pilot in vivo study in male Sprague-Dawley rats (2 mg/kg bw i. v.). Moreover, the ability of tryptanthrin to cross the blood-brain barrier was evaluated in three in vitro human and animal blood-brain barrier models. Bioanalytical UPLC-MS/MS methods used were validated according to current international guidelines. A half-life of 40.63 ± 6.66 min and a clearance of 1.00 ± 0.36 L/h/kg were found in the in vivo pharmacokinetic study. In vitro data obtained with the two primary animal blood-brain barrier models showed a good correlation with an immortalized human monoculture blood-brain barrier model (hBMEC cell line), and were indicative of a high blood-brain barrier permeation potential of tryptanthrin. These findings were corroborated by the in silico prediction of blood-brain barrier penetration. P-glycoprotein interaction of tryptanthrin was assessed by calculation of the efflux ratio in bidirectional permeability assays. An efflux ratio below 2 indicated that tryptanthrin is not subjected to active efflux.


Assuntos
Barreira Hematoencefálica/metabolismo , Quinazolinas/farmacocinética , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Isatis/química , Masculino , Estrutura Molecular , Extratos Vegetais/farmacocinética , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Ratos Sprague-Dawley
4.
J Pharm Biomed Anal ; 98: 235-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24949819

RESUMO

The compound (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone) was identified from lipophilic woad extracts (Isatis tinctoria L., Brassicaceae) as a compound possessing potent histamine release inhibitory and anti-inflammatory properties [1]. To further evaluate the potential of indolinone in terms of crossing the blood-brain barrier (BBB), we screened the compound in several in vitro cell-based human and animal BBB models. Therefore, we developed a quantitative LC-MS/MS method for the compound in modified Ringer HEPES buffer (RHB) and validated it according to FDA and EMA guidelines [2,3]. The calibration curve of indolinone in the range between 30.0 and 3000ng/ml was quadratic, and the limit of quantification was 30.0ng/ml. Dilution of samples up to 100-fold did not affect precision and accuracy. The carry-over was within acceptance criteria. Indolinone proved to be stable in RHB for 3h at room temperature (RT), and for three successive freeze/thaw cycles. The processed samples could be stored in the autosampler at 10°C for at least 28h. Moreover, indolinone was stable for at least 16 days in RHB when stored below -65°C. This validation study demonstrates that our method is specific, selective, precise, accurate, and capable to produce reliable results. In the immortalized human BBB mono-culture model, the apparent permeability coefficient from apical to basolateral (PappA→B), and the Papp from basolateral to apical (PappB→A) were 19.2±0.485×10(-6)cm/s and 21.7±0.326×10(-6)cm/s, respectively. For the primary rat/bovine BBB co-culture model a PappA→B of 27.1±1.67×10(-6)cm/s was determined. In the primary rat BBB triple co-culture model, the PappA→B and the PappB→A were 56.2±3.63×10(-6)cm/s and 34.6±1.41×10(-6)cm/s, respectively. The data obtained with the different models showed good correlation and were indicative of a high BBB permeation potential of indolinone confirmed by in silico prediction calculations. P-glycoprotein (P-gp) interaction for indolinone was studied with the aid of a calcein-AM uptake assay, and by calculation of the efflux ratio (ER) from the bidirectional permeability assays. For both bidirectional BBB models an ER below 2 was calculated, indicating that no active mediated transport mechanism is involved for indolinone. In porcine brain capillary endothelial cells (PBCECs), the calcein-AM uptake assay demonstrated that indolinone is neither a P-gp substrate nor a P-gp inhibitor and is accumulated into cells at high extent.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida/métodos , Indóis/química , Indóis/metabolismo , Espectrometria de Massas em Tandem/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Bovinos , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fluoresceínas/química , Fluoresceínas/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Suínos
5.
Fluids Barriers CNS ; 10(1): 33, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24262108

RESUMO

BACKGROUND: Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. METHODS: Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. RESULTS: The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 µm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. CONCLUSIONS: Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...